phenyl rings were refined as rigid groups (C-C = 1.29 Å; C-H = 1.00The manganese and phosphorus atoms were refined anisotropically, while the carbon, oxygen, and nitrogen atoms were refined isotropically. No absorption corrections were applied. The methine hydrogen was located on a difference Fourier map after complete refinement of the structure. The inclusion of this hydrogen (with a fixed thermal paremeter $B_{iso} = 4.0$) in two additional refinements did not affect the R values,⁴⁷ which converged to R = 0.055, $R_w = 0.058$.

(46) Scheringer, C. Acta. Crystallogr. 1963, 16, 546.

Acknowledgment. We are grateful to the Department of Energy for support of this project. FT NMR spectrometers utilized were provided by NSF departmental instrumentation grants. J. C. Selover thanks the IBM Corporation for a Fellowship.

Synthesis and Reactivity of Stable Metallacyclic Manganese and Rhenium α -Hydroxyalkyl Complexes of the Formula $(CO)_4 MP(C_6H_5)_2(o-C_6H_4CHOH)$

George D. Vaughn,¹ C. E. Strouse,^{1b} and J. A. Gladysz^{*1,2}

Contribution from the Departments of Chemistry, University of Utah, Salt Lake City, Utah 84112, and University of California, Los Angeles, California 90024. Received June 18, 1985

Abstract: Reaction of $(CO)_5ReCH_2C_6H_5$ with $(C_6H_5)_2P(o-C_6H_4OSi(CH_3)_2(t-C_4H_9))$ in octane (100-126 °C) gives the metallacycle (CO)₄ReP(C₆H₅)₂(o-C₆H₄CHOSi(CH₃)₂(t-C₄H₉)) (**21**, 46%). Reaction of **21** with (C₂H₅)₄N⁺F⁻(H₂O)_{2,6}, followed by silica gel filtration, gives the stable α -hydroxyalkyl complex (CO)₄ReP(C₆H₅)₂(o-C₆H₄CHOH) (5, 77%). When this reaction is worked up prior to silica gel filtration, crystalline metallabicycle $(C_2H_5)_4N^+$ -fac- $[(CO)_3ReP(C_6H_5)_2(o-C_6H_4C(H)OC=O)]^-$ (22, 94%) is isolated. The structure of 22 is established by X-ray crystallography. Complex 5 can also be prepared by reduction of $(CO)_4 \text{ReP}(C_6H_5)_2(o-C_6H_4C=O)$ (24) with BH₃-THF (93%). Depending upon conditions, CF₃SO₃H converts 5 either to the ether $[(CO)_4 \text{ReP}(C_6 H_5)_2(o-C_6 H_4 CH)-]_2O$ (23) or an ca. 1:1 mixture of 24 and $(CO)_4 \text{ReP}(C_6 H_5)_2(o-C_6 H_4 CH_2)$ (25). Reaction of (CO)₅MH, M = Re, with $(C_6H_5)_2P(o-C_6H_4CHO)$ (18) does not give 5, but when M = Mn, (CO)₄MnP- $(C_6H_5)_2(o-C_6H_4\dot{C}HOH)$ (4, 75-84%) is obtained. On the basis of these data and results of other researchers, it is suggested that many of the factors that influence the stability of organic XCH(R)OH compounds (e.g., hemiacetals) also influence the stability of $L_nMCH(R)OH$ complexes. Complexes 4 and 5 do not carbonylate under 300 psi of CO. Reaction of $(CO)_{5}$ -MnSi(CH₃)₃ with 18 gives (CO)₄Mn $P(C_6H_5)_2(o-C_6H_4CH(OSi(CH_3)_3)-C=O)$ (29, 52%), which upon subsequent treatment with KF gives an authentic sample of carbonylated 4, hydroxyacyl complex $(CO)_4 Mn P(C_6H_5)_2(o-C_6H_4CH(OH)-C=O)$ (30, 93%).

In the preceding paper, we described the generation of manganese and rhenium α -hydroxyalkyl complexes of the formula $(CO)_5MCH(C_6H_5)OH$ that were unstable with respect to metal hydride (CO)₅MH and benzaldehyde (eq 1).³ Since metal α hydroxyalkyl complexes are a scarce class of compounds,4-16 and

1982, 231, 335.

(8) Vaughn, G. D.; Gladysz, J. A. J. Am. Chem. Soc. 1981, 103, 5608.
(9) Berke, H.; Huttner, G.; Weiler, G.; Zsolnai, L. J. Organomet. Chem.
1981, 219, 353. This well-characterized α-hydroxyalkyl complex is unstable above 0 °C

(10) (a) Thorn, D. L. Organometallics 1982, 1, 197. (b) Thorn, D. L.;
Tulip, T. H. Ibid. 1982, 1, 1580. (c) See also: Thorn, D. L.; Calabrese, J. C. J. Organomet. Chem. 1984, 272, 283.
(11) (a) Wayland, B. B.; Woods, B. A.; Minda, V. M. J. Chem. Soc.,
Chem. Commun. 1982, 634. (b) Van Voorhees, S. L.; Wayland, B. B. Or-

ganometallics 1985, 4, 1887.

are involved in several important catalytic processes, we sought a means to block this decomposition mode.

M = Mn , Re

A survey of stable metal α -hydroxyalkyl complexes that had been reported by others in the literature at that time (1-3, Figure $1)^{4-7}$ and since $(6-17)^{9-15}$ suggested to us that these compounds might closely parallel the behavior of hemiacetals, R'OCH(R)OH, and other XCH(R)OH species. In general, XCH(R)OH com-

0002-7863/86/1508-1462\$01.50/0 © 1986 American Chemical Society

⁽⁴⁷⁾ All least-squares refinements computed the agreement factors R and R_w according to $R = \sum ||F_o| - |F_c|| / \sum |F_o|$ and $R_w = [\sum \omega_i ||F_o| - |F_c||^2 / \sum \omega_i |F_o|^2]^{1/2}$, where F_o and F_c are the observed and calculated structure factors, respectively, and $\omega_i^{1/2} = 1/\sigma(F_o)$. The function minimized in all least-squares refinements was $\sum \omega_i ||F_o| - |F_c||^2$.

^{(1) (}a) University of Utah. (b) University of California.

 ⁽²⁾ Address correspondence to this author at the University of Utah.
 (3) Selover, J. C.; Vaughn, G. D.; Strouse, C. E.; Gladysz, J. A. J. Am.

⁽³⁾ Selover, J. C.; Vaughn, G. D.; Strouse, C. E.; Gladysz, J. A. J. Am. Chem. Soc., preceding paper in this issue.
(4) Blackmore, T.; Bruce, M. I.; Davidson, P. J.; Iqbal, M. Z.; Stone, F. G. A. J. Chem. Soc. A 1970, 3153.
(5) (a) Casey, C. P.; Andrews, M. A.; Rinz, J. E. J. Am. Chem. Soc. 1979, 101, 741. (b) Casey, C. P; Andrews, M. A.; McAlister, D. R.; Rinz, J. E. Ibid. 1980, 102, 1927. (c) Casey, C. P.; Andrews, M. A.; McAlister, D. R.; Jones, W. D.; Harsy, S. G. J. Mol. Catal. 1981, 13, 43.
(6) (a) Sweet, J. R.; Graham, W. A. G. J. Am. Chem. Soc. 1982, 104, 2811.
(7) (a) Headford, C. E. L.; Roper, W. R. J. Organomet. Chem. 1980, 198, C7. (b) Clark, G. R.; Headford, C. E. L.; Marsden, K.; Roper, W. R. Ibid. 1982, 231, 335.

⁽¹²⁾ May, C. J.; Graham, W. A. G. J. Organomet. Chem. 1982, 234, C49. (13) (a) Lapinte, C.; Astruc, D. J. Chem. Soc., Chem. 1982, 23, C49,
 (13) (a) Lapinte, C.; Astruc, D. J. Chem. Soc., Chem. Commun. 1983,
 (43) (b) Nelson, G. O. Organometallics 1983, 2, 1474. (c) Lapinte, C.;
 Astruc, D. J. Organomet. Chem. 1984, 260, C13.
 (14) (a) Lin, Y. C.; Milstein, D.; Wreford, S. S. Organometallics 1983,
 (14) (b) Specify Preference T. C. Wreford, S. S. Organometallics 1983,

^{(17) (}a) Lin, 1. C., Manar, T.; Coman, E.; Menard, K.; Cutler, A. Inorg. Chem. 1982, 21, 1275.
(15) (a) Vaughn, G. D.; Gladysz, J. A. Organometallics 1984, 3, 1596. (b) Vaughn, G. D.; Gladysz, J. A. J. Am. Chem. Soc., following paper in this issue

^{(16) (}a) Bakač, A.; Espenson, J. H. J. Am. Chem. Soc. 1981, 103, 2721. (b) Kirker, G. W.; Bakač, A.; Espenson, J. H. *Ibid.* **1982**, *104*, 1249. (c) A metallabicyclic iridium α -hydroxyalkyl complex recently has been reported: Clark, G. R.; Greene, T. R.; Roper, W. R. J. Organomet. Chem. **1985**, *293*, Correct content of the statemeta structure of the statemeta structure of the structure of th C25.

Synthesis of Mn and Re α -Hydroxyalkyl Complexes

Figure 1. Stable metal α -hydroxyalkyl complexes.

pounds rapidly decompose to aldehydes RCH==O and HX unless (a) X is a very poor leaving group (e.g., CN),¹⁷ (b) R is a very electronegative group (CCl₃, CF_3), which weakens the RCH=O carbon-oxygen bond¹⁷⁻²⁰ and renders the 1,2-addition of HX thermodynamically more favorable, or (c) X and R are incorporated into a ring, as in certain naturally occurring hemiacetals.²¹ Hence, XCH(R)OH compounds may be stabilized (a) kinetically, (b) enthalpically, or (c) entropically.

In this paper, we describe the use of strategy c-implemented by constructing a second link of the α -hydroxyalkyl carbon to the metal-to reverse the direction of the equilibrium in eq i. Complexes $(CO)_4MnP(C_6H_5)_2(o-C_6H_4CHOH)$ (4, Figure 1) and $(CO)_4 ReP(C_6H_5)_2(o-C_6H_4CHOH)$ (5) are isolated in high yields via three distinct synthetic approaches. We also describe the properties of some novel intermediates encountered in these syntheses, including an X-ray crystal structure of the anionic metallabicycle $(C_2H_5)_4N^+$ -fac-[(CO)₃ReP(C₆H₅)₂(o-C₆H₄C-

(H)OC==O)]⁻. A portion of this study has been communicated.⁸ Results

I. Synthesis of Rhenium α -Hydroxyalkyl Complex 5 via Cyclometalation. Kaesz and McKinney have shown that the reaction of methyl complex (CO)₅MnCH₃ and $P(o-C_6H_4CH_3)_3$ in refluxing THF gives cyclometalated product $(CO)_4 MnP(o-C_6H_4CH_3)_2$ -(o-C₆H₄CH₂).²² Subsequently, Bennet, Bruce, and Stone found benzyl complex (CO)₅MnCH₂C₆H₅ to be more reactive than (CO)₅MnCH₃.²³ Hence, we decided to attempt the preparation of our target complexes via the cyclometalation of suitably functionalized phosphines with $(CO)_5MCH_2C_6H_5$. Since rhenium complexes often exhibit greater kinetic stability than manganese

analogues,²⁴ we first investigated the synthesis of (CO)₄ReP- $(C_6H_5)_2(o-C_6H_4CHOH)$ (5).

Reaction of phosphine aldehyde $(C_6H_5)_2P(o-C_6H_4CHO)$ (18)²⁵ with NaBH₄ gave alcohol $(C_6H_5)_2P(o-C_6H_4CH_2OH)$ (19, eq ii; 96%).²⁶ Treatment of **19** with $(t-C_4H_9)(CH_3)_2SiCl/pyridine gave$ $(C_6H_5)_2P(o-C_6H_4CH_2OSi(CH_3)_2(t-C_4H_9))$ (20) in 95% yield. Trimethylsilyl compound $(C_6H_5)_2P(o-C_6H_4CH_2OSi(CH_3)_3)$ was similarly prepared.

$$(C_{6}H_{5})_{2}P \xrightarrow{H} (C_{6}H_{5})_{2}P \xrightarrow{$$

When 20 and $(CO)_5 ReCH_2 C_6 H_5^{27}$ were heated in octane on a steam bath (3 h) and then at reflux (2 h), substitution of CO, rhenium-carbon bond formation, and toluene elimination were accomplished in a single step, giving after workup analytically

pure $(CO)_4 ReP(C_6H_5)_2(o-C_6H_4CHOSi(CH_3)_2(t-C_4H_9))$ (21) in 46% yield (eq iii, step a). Complex 21 exhibited two ¹H and ¹³C

NMR resonances for the diastereotopic $Si(CH_3)_2$ methyl groups, as summarized in Table I. The methine ¹H NMR resonance, δ 6.11, was a doublet of doublets with $J_{\rm HP}$ = 2.1 Hz and $J_{\rm HH}$ = 1.0 Hz. Decoupling experiments showed the latter coupling to be due to a long-range interaction with an aryl proton. Complex 21 also exhibited the expected methine carbon ¹³C NMR resonance (65.1 ppm), and its IR $\nu_{C=0}$ pattern (Table II) was characteristic of cis-disubstituted rhenium tetracarbonyls.^{3,28}

When phosphine 20 and $(CO)_5 ReCH_2C_6H_5$ were reacted for 1.5 h in refluxing heptane, a precursor to metallacycle 21 could be isolated in good yield. On the basis of IR $[(cm^{-1}, CCl_4) 2077]$ m, 1993 s, 1969 vs, 1933 s)] and ¹H NMR data, this material was assigned as the substitution product cis-(CO)₄Re-(CH₂C₆H₅)P(C₆H₅)₂(o-C₆H₄CH₂OSi(CH₃)₂(t-C₄H₉)). Subsequent thermolysis in refluxing octane gave 21.

Reactions of phosphine alcohol 19 with (CO)₅ReCH₂C₆H₅ (refluxing toluene, heptane) and (CO), MnCH₂C₆H₅ (refluxing hexane) were attempted. By analogy to step a of eq iii, it was

⁽¹⁷⁾ Hine, J. "Structural Effects on Equilibria in Organic Chemistry"; John Wiley & Sons: New York, 1975; pp 257-265. (18) Bone, R.; Cullis, P.; Wolfenden, R. J. Am. Chem. Soc. 1983, 105,

^{1339.}

⁽¹⁹⁾ Streitwieser, A., Jr.; Heathcock, C. H. "Introduction to Organic Chemistry", 2nd ed.; Macmillan: New York, 1981; pp 378-381.
(20) Kanchuger, M. S.; Byers, L. D. J. Am. Chem. Soc. 1979, 101, 3005.
(21) Reference 17, pp 284-301.

⁽²²⁾ McKinney, R. J.; Hoxmeier, R.; Kaesz, H. D. J. Am. Chem. Soc. 1975, 97, 3059

⁽²³⁾ Bennett, R. L.; Bruce, M. I.; Stone, F. G. A. J. Organomet. Chem. 1975, 94, 65.

^{(24) (}a) Tam, W.; Marsi, M.; Gladysz, J. A. Inorg. Chem. 1983, 22, 1413.
(b) Tam, W.; Lin, G.-Y.; Gladysz, J. A. Organometallics 1982, 1, 525. (c) Casey, C. P.; Scheck, D. M. J. Am. Chem. Soc. 1980, 102, 2723, 2728. (25) Hoots, J. E.; Rauchfuss, T. B.; Wrobleski, D. A. Inorg. Synth. 1982, 11, 525.

^{21, 175}

⁽²⁶⁾ This compound has been subsequently reported by Landvatter and Rauchfuss: Landvatter, E. F.; Rauchfuss, T. B. Organometallics 1982, J, 506.
(27) Hieber, W.; Braun, G.; Beck, W. Chem. Ber. 1960, 93, 901.
(28) Adams, D. M. "Metal-Ligand and Related Vibrations"; St. Martin's Press: New York, 1968: (a) pp 100–101; (b) p 102.

Table I.	¹ H and	¹³ C NMR	Data for	New	Organometallic	Compounds
----------	--------------------	---------------------	----------	-----	----------------	-----------

	1 H	¹ Η NMR (δ) ^α			¹ H NMR $(\delta)^a$ ¹³ C NMR $(ppm)^{b,c}$				¹³ C NMR (ppm) ^{<i>b,c</i>}		
compound	phenyl	ortho methine or methylene	other	со	phenyl	methine or methylene	other				
000-+ (COLMP-C-H 1649/2P-C) 55- 55- 55- 55- 55- 55- 55- 55- 55- 55	7.63-7.55 (m, 1 H), 7.53-7.31 (m, 11 H), 7.08-6.97 (m, 2 H)	6.11 (d of d, $J_{HP} = 2.1$ Hz, $J_{HHaryl} = 1.0$ Hz, 1 H)	0.92 (s, 9 H, C(CH ₃) ₃), 0.15 (s, 3 H, SiCH ₃), 0.07 (s, 3 H, SiCH ₃ ')	191.7, 191.1 (2 C=O), 189.8	166.6, 133.8, 132.9, 132.6, 131.5, 131.3, 131.1, 129.3, 129.1, 126.0, 125.5 ^e	65.1	26.3 (C(CH ₃) ₃), 18.6 (C(CH ₃) ₃), -4.9 (SiCH ₃), -5.1 (SiCH ₃ ')				
ССОДИТ-С-н IC6H512P-С-н 2°	7.82–7.72 (m, 1 H), 7.65–7.07 (m, 13 H)	6.08 (d, J _{HH} = 5.6 Hz, 1 H)	3.30 (d, J _{HH} = 5.6 Hz, 1 H, OH)	192.2, 191.6 (2 C≡O), 190.8	167.5, 134.2, 132.8, 132.4, 132.2, 132.1, 131.8, 130.0, 127.5, 126.8 ^c	65.6					
сой сой сотисти сотисти комур 22	8.02-7.87 (m, 2 H), 7.61 (t, J _{HH} = 7.4 Hz, 1 H), 7.47-7.10 (m, 11 H)	5.51 (d, J _{HP} = 5.4 Hz, H)	3.04 (q, J_{HH} = 7.3 Hz, 8 H, NCH ₂), 1.08 (tt, J_{HH} = 7.3 Hz, J_{HN} = 1.8 Hz, 12 H, CH ₃)	204.5 (d, $J_{CP} = 53.6$ Hz, C=O trans to P) g 203.2 (d, $J_{CP} =$ 7.4 Hz, C=O cis to P), 203.1 (d, $J_{CP} =$ 7.4 Hz, C=O cis to P), 188.6 (d, $J_{CP} =$ 14.9 Hz, C=O)	162.2, 135.5, 134.1, 132.5, 131.8, 131.2, 130.8, 130.2, 129.2, 129.0, 127.7 ^e	65.9	53.0 (t, J _{CN} = 3.0 Hz, NCH ₂), 7.7 (CH ₃)				
ددور میں درج میں کے ایک درج میں کے ایک	7.95-7.84 (m, 2 H), 7.70-7.05 (m, 22 H), 7.05-6.92 (m, 4 H)	6.21 (s, 2 H)		193.4, 191.9, 191.4, 189.8	165.8, 135.9, 134.9, 133.8, 133.7, 132.3, 132.1, 131.4, 131.3, 129.8, 129.7, 129.5, 127.9, 126.0 ^e	75.8					
	7.62–6.94 (m, 14 H)	2.64 (d, $J_{\rm HP}$ = 4.2 Hz, 2 H)		190.9, 190.4 (2 C≡O), 189.3	162.7, 135.0, 134.2, 132.4, 131.7, 131.3, 130.5, 130.4, 128.7, 124.4	2.6					
(CO) 4 H (CO) 4 H (c) 4 H (c) 4 H (c) 4 H (c) 4 H	7.81-7.72 (m, 5 H), 7.57-7.52 (m, 7 H), 7.40-7.34 (m, 1 H), 6.87-6.80 (m, 1 H)	5.83 (s, 1 H)	3.83 (m, AA'BB', 4 H, CH ₂), -4.97 (d, J _{HP} = 21.7 Hz, H, ReH)	191.8 (d, $J_{CP} = 6.8$ Hz), 191.1 (d, $J_{CP} = 9.3$ Hz, 2 C=O), 190.3 (d, $J_{CP} = 42.0$ Hz)	PC ₆ H ₄ C: 141.5 (d, $J_{CP} = 9.0$ Hz, o), ^k portion of obscured d at 135.3 (ipso), 132.3 (d, $J_{CP} = 7.1$ Hz, o'), 132.2 (s, p), 131.2 (d, $J_{CP} = 7.0$ Hz, m), 130.6 (d, $J_{CP} = 9.1$ Hz, m). C ₆ H ₅ : 135.7 (d, $J_{CP} = 11.6$ Hz), 133.8 (d, $J_{CP} = 48.7$ Hz, ipso), 132.4 (s, p), 130.1 (d, $J_{CP} = 9.4$ Hz)	101.2 (d, J _{CP} = 11.1 Hz, CH)	66.2 (s, CH ₂)				
рсн, н н-с-осн, (соцят- са, 22'	7.80–7.72 (m, 5 H), 7.58–7.53 (m, 7 H), 7.42–7.36 (m, 1 H), 7.18–7.11 (m, 1 H)	5.47 (s, 1 H)	3.01 (s, 6 H, OCH ₃), -4.91 (d, J = 21.9 Hz, 1 H, ReH)	191.8 (d, $J_{CP} = 6.9$ Hz), 191.3 (d, $J_{CP} = 9.5$ Hz, 2 C=O), 190.3 (d, $J_{CP} =$ 42.0 Hz)	PC ₆ H ₄ C: 142.1 (d, $J_{CP} = 9.0$ Hz, o), ^k 133.7 (d, $J_{CP} = 11.2$ Hz, o'), 133.1 (d, $J_{CP} = 44.0$ Hz, ipso), 131.8 (s, p), 130.2 (d, $J_{CP} = 9.2$ Hz, m), 129.7 (d, $J_{CP} = 9.2$ Hz, m). C ₆ H ₅ : 135.7 (d, $J_{CP} = 11.6$ Hz), 134.4 (d, $J_{CP} = 48.6$ Hz, ipso), 132.4 (s, p), 130.0 (d, $J_{CP} =$ 11.4 Hz)	101.8 (d, J _{CP} = 7.1 Hz, CH)	54.5 (s, CH ₃)				
	7.84–7.75 (m, 4 H), 7.71–7.66 (m, 1 H), 7.54–7.33 (m, 9 H)	4.17 (s, 2 H)	3.01 (s, 3 H, OCH ₃)	183.9 (d, $J_{CP} = 8.5$ Hz, 2 C=O), 182.5 (d, $J_{CP} = 6.2$ Hz), 180.9 (d, $J_{CP} = 54.1$ Hz) ^{<i>t</i>}	$\begin{aligned} & PC_6H_4C: \ \ 141.0 \ (d, \ J_{CP} = 8.2 \ Hz, \\ & o),^k \ 133.6 \ (d, \ J_{CP} = 10.4 \ Hz, \ o'), \\ & 128.4 \ (d, \ J_{CP} = 10.2 \ Hz, \ m). \\ & C_6H_5: \ \ 134.3 \ (d, \ J_{CP} = 10.4 \ Hz), \\ & 129.1 \ (d, \ J_{CP} = 10.4 \ Hz). \\ & Unassigned: \ \ 132.2, \ \ 131.8, \ \ 131.6, \\ & 131.5, \ \ 130.9, \ \ 130.5, \ \ \ 130.5' \end{aligned}$	72.8 (d, $J_{CP} =$ 6.0 Hz, CH_2) ^{<i>i</i>}	58.7 (s, CH ₃) [/]				

	-0.99 (s, SiC) ¹		of 4, 5, and 21-24 are ^d Spectra in CD,Cl,.
78.6'	89.5 (d, J _{CP} = 7.4 Hz) ¹	90.4 (d, J _{CP} ≈ 10.1 Hz) [/]	s noted. 'Spectra (ter detail in ref 56.
165.3, 135.8, 134.2, 133.9, 132.4, 132.1, 131.9, 131.6, 131.4, 130.0, 126.9, 126.8 ^{eJ}	$PC_{6}H_{4}C: 143.4 (d, J_{CP} \approx 13.7 Hz, 0), * C_{6}H_{5}: 133.8 (d, J \approx 10.5 Hz), 132.6 (d, J \approx 9.0 Hz), 131.5 (s, p), 131.2 (s, p), 129.4 (d, J_{CP} \approx 9.0 Hz), 129.3 (d, J_{CP} \approx 9.0 Hz), 129.3 (d, J_{CP} \approx 9.0 Hz), 129.3 (1, 20.3, 128.4, 128.3, 128.2, 128.1, 127.7e^{1}$	$\begin{split} & PC_{G}H_C: \ 143.9 \ (d, J_{CP} \approx 7.2 \ Hz, o),\\ & o)^* \ 132.9 \ (d, J_{CP} \approx 7.0 \ Hz, o),\\ & 128.5 \ (d, J_{CP} \approx 7.2 \ Hz, m), 128.4 \\ & (d, J_{CP} \approx 40.7 \ Hz, ipso), 126.7 \ (d, J_{CP} \approx 9.8 \ Hz, m), 126.7 \ (d, J_{CP} \approx 9.8 \ Hz, m), 133.6 \\ & (d, J_{CP} \approx 11.1 \ Hz), 133.7 \ (d, J_{CP} \approx 11.1 \ Hz), 133.7 \ (d, J_{CP} \approx 11.1 \ Hz), 133.7 \ (d, J_{CP} \approx 11.1 \ Hz), 133.2 \ (s, p), 132.2 \ (d, J_{CP} \approx 11.1 \ Hz), 133.2 \ (s, p), 132.2 \ (d, J_{CP} \approx 11.1 \ Hz), 133.2 \ (s, p), 132.2 \ (d, J_{CP} \approx 11.1 \ Hz), 133.2 \ (d, J_{CP} \approx 11.1 \ d, J_{CP} \approx 11.1 \ Hz), 133.2 \ (d, J_{CP} \approx 11.1 \ d, J_{CP} \approx 1.1 \ d, J_{CP} \approx 1.2 \ d, $	rature and referenced to (CH ₃) ₄ Si unles
219.0 (br), 218.6 (br), 217.3 (br) [/]	268.1 (d, $J_{CP} \approx 16.4$ Hz, C=O), 216.3 (d, $J_{CP} \approx 17.9$ Hz, C=O), 215.9 (d, $J_{CP} \approx 14.0$ Hz, C=O), 215.3 (s), 215.2 (d, $J \approx 20.8$ Hz, C=O)/	266.2 (d, $J_{CP} = 15.4$ Hz, C=O), 217.0 (d, $J_{CP} = 18.2$ Hz, C=O), 216.1 (s), 215.9 (d, $J_{CP} = 11.2$ Hz, C=O), 215.8 (d, $J_{CP} = 16.9$ Hz, C=O) ¹	d. b At ambient probe tempe are at 75 MHz and ¹ H decou
3.73 (br s, 1 H, OH)	-0.14 (s, 9 H, SiCH ₃)	4.95 (d, J ≈ 4.1 Hz, 1 H, OH)	(CH ₃) ₄ Si unless note ed. Spectra of 26–30
6.28 (br s, 1 H)	4.85 (s, 1 H)	4.83 (d, <i>J</i> = 4.0 Hz, 1 H (s, after D ₂ O addition))	rature, and referenced to es are singlets unless note
7.82-7.73 (m, 1 H), 7.64-7.12 (m, 13 H)	7.68-7.29 (m, 13 H), 6.91-6.84 (m, 1 H)	7.91-7.86 (m, 1 H), 7.62-7.22 (m, 12 H), 6.69-6.62 (m, 1 H)	00 MHz, ambient probe temper ¹ H and ³¹ P decounled: resonanc
1001 H H H H H H		ĕ o S S S S S S S S S S S S S S S S S S	^a At 200 or 3 at 50 MHz and

Table II. Summary of Key IR Data for New Organometallic Compounds (cm⁻¹)

compound (solvent)	ν _{C==0}	other
21 (THF)	2081 m, 1988 s, sh, 1980 vs, 1943 s	
5 (CH ₃ CN)	2082 m, 1986 sh, 1939 s	$v_{\rm O-H}$ 3520 w, br
22 (CH ₃ CN)	1976 vs, 1940 s, 1861 s	ν _{C=0} 1640 m
23 (THF)	2073 m, 1992 vs, 1980 s, 1939 vs	
25 (THF)	2080 m, 1977 vs, 1937 s	
26 (hexanes)	2085 m, 1999 s, 1990 mw, 1977 vs, 1959 s ^a	
27 (hexanes)	2083 ms, 1996 s, 1979 s, 1974 vs, 1966 s, 1959 sh	
28 (hexanes)	2101 ms, 2020 s, 2003 vs, 1949 s	
4 (CH ₃ CN)	2059 ms, 1967 vs, 1941 s	v _{O-H} 3496 w, br
29 (THF)	2064 s, 1992 ms, 1971 vs	ν _{C==0} 1657 w, 1629 m
30 (THF)	2069 s, 1999 ms, 1976 vs	$\nu_{C=0}$ 1624 sh, 1613 m, $\nu_{O=1}$ 3394 vw, br

"This absorption shifted to 1948 cm⁻¹ in the corresponding rhenium deuteride; the other absorptions were unchanged; see ref 57 for a similar trans effect.

hoped that target α -hydroxyalkyl complexes 4 and 5 might be obtained directly. Starting materials were consumed, but no trace of the desired products was found by IR or ¹H NMR spectroscopy. On the basis of the thermal stabilities of 4 and 5 (vide infra), some decomposition would be expected under the reaction conditions. Also, the reaction of $(C_6H_5)_2P(o-C_6H_4CH_2OSi(CH_3)_3)$ with (CO)₅ReCH₂C₆H₅ was briefly examined. This phosphine appeared much less reactive than 20 toward cyclometalation.

Attention was next turned to the conversion of 21 to the desired α -hydroxyalkyl complex 5. Treatment of 21 with $(C_2H_5)_4N^+F^-(H_2O)_{2.6}$ in acetone/CH₃CN, followed by addition of H₂O and silica gel filtration, removed the trialkylsilyl protecting group and gave, after preparative HPLC, analytically pure 5 in 77% yield (eq iii, steps b and c). Complex 5 exhibited an OH ¹H NMR resonance (CD₃CN) at δ 3.30 (d, J_{HH} = 5.6 Hz; Table I). When 5 was dissolved in $CDCl_3/D_2O$ or acetone- d_{61} the OH resonance disappeared. The 70-eV mass spectrum of 5 showed a molecular ion. The IR spectrum of 5 (CH₃CN, Table II) indicated ν_{O-H} (3517 cm⁻¹) to be weak relative to $\nu_{C=O}$ (2081 m, 1975 vs, 1939 s). In 5-d₁ (prepared by D₂O exchange), ν_{O-D} was observed at 2603 cm⁻¹.

II. Synthesis and X-ray Structure of Metallabicycle 22. When the reaction of 21 with $(C_2H_5)_4N^+F^-$ was worked up prior to silica gel filtration (eq iii, step b), a crystalline compound was obtained in 94% yield whose microanalysis suggested the possible alkoxide structure $(C_2H_5)_4N^+(CO)_4ReP(C_6H_5)_2(o-C_6H_5CHO^-)$. However, the IR spectrum showed a medium acyl absorbance, $\nu_{C=0}$ 1640 cm⁻¹, and a $\nu_{C=0}$ pattern (1983 s, 1885 s, 1861 s) characteristic^{28b} of a fac-substituted LL'L"M(CO)₃ complex. This suggested the bicyclic "lactone" structure 22 (eq iii), or possibly a dimer containing an eight-membered ring. Since we were unaware of any structurally related complexes, and wished to unambiguously determine the ring size,²⁹ an X-ray crystal structure was executed.

Single-crystal X-ray data were obtained under the conditions summarized in Table III. The unit cell was found to be monoclinic, with the lattice parameters listed in Table III. Refinement, described in the Experimental Section, included location of the

⁽²⁹⁾ For instance, examples of four-membered metallacycles in equilibrium with eight-membered dimetallacycles are known: Webb, M. J.; Bennett, M. J.; Chan, L. Y. Y.; Graham, W. A. G. J. Am. Chem. Soc. 1974, 96, 5931.

Table III. Summary of Crystallographic Data for 22

formula	
formula ut	718 80
lormula wt	/18.60
crystal system	
systematic absences	$n\kappa i, \kappa + i \neq 2n$ and $n0i, n \neq 2n$
space group	A2/a
cell dimensions (-158 °C)	
a, A	18.538 (7)
b, A	10.474 (4)
<i>c</i> , A	32.24 (1)
β , deg	91.89 (3)
V, \mathbf{A}^3	6257 (4)
Z	8
$d_{\rm obsd}, {\rm g/cm^3} (20 {\rm ^\circ C})$	1.54
d_{calcd} , g/cm ³ (-158 °C)	1.53
crystal dimensions, mm	$0.25 \times 0.20 \times 0.35$
radiation, Å	Μο Κα (λ 0.71069)
temp of collection, °C	-158
data collection method	$\theta - 2\theta$
scan speed, deg/min	8.0
scan range, deg	$K\alpha_1 = -1.0$ to $K\alpha_2 = +1.25$
no. of reflections between std.	97
total unique data	5557
obsd data, $I > 3\sigma(I)$	4724
abs. coeff. (μ) , cm ⁻¹	40.22
no. of variables	352
$R = \sum F_{\rm o} - F_{\rm c} / \sum F_{\rm o} $	0.035
$R_{\rm w} = \left[\sum \omega_{\rm i} F_{\rm o} - \right]$	0.058
$ F_{\rm c} ^2 / \sum \omega_i F_{\rm c} ^2]^{1/2}$	
goodness of fit	2.04
max absorption corr	0.7388
min absorption corr	0.6593
av absorption corr	0.7177

Table IV.	Positional	Parameters	of	Atoms	in	22	and	Their
Estimated	Standard	Deviations ^a						

atom	x	У	Z
Re	0.45050 (1)	0.07140 (2)	0.14440 (1)
Р	0.4160 (1)	0.2548 (2)	0.1029 (1)
C1	0.5366 (4)	0.0535 (7)	0.1112(2)
C2	0.4873 (4)	-0.0496 (7)	0.1860 (2)
C3	0.3930 (4)	-0.0485 (7)	0.1117(2)
C4	0.4781 (4)	0.2287 (7)	0.1885 (2)
C5	0.3724 (4)	0.1244 (7)	0.1898 (2)
O 1	0.5893 (3)	0.0445 (5)	0.0932 (2)
O2	0.5099 (3)	-0.1169 (5)	0.2116 (2)
O3	0.3544 (3)	-0.1166 (6)	0.0929 (2)
O4	0.4087 (2)	0.2200 (5)	0.2114 (1)
O5	0.3126 (3)	0.0951 (5)	0.2020 (2)
N	0.7387 (3)	0.2928 (6)	0.1850 (2)
C(1A)	0.3207 (4)	0.2877 (7)	0.0893 (2)
C(1B)	0.4500 (4)	0.3923 (7)	0.1321 (2)
C(1C)	0.4590 (4)	0.2657 (7)	0.0522 (2)
C(2A)	0.3009 (4)	0.3853 (8)	0.0616 (2)
C(2B)	0.4810 (4)	0.3634 (7)	0.1714 (2)
C(2C)	0.5147 (4)	0.3451 (8)	0.0440 (2)
C(3A)	0.2665 (4)	0.2146 (8)	0.1069 (3)
C(3B)	0.4485 (4)	0.5201 (7)	0.1178 (2)
C(3C)	0.4372 (5)	0.1757 (8)	0.0223 (3)
C(4A)	0.2281 (5)	0.4105 (9)	0.0535 (3)
C(4B)	0.5117 (4)	0.4618 (7)	0.1956 (2)
C(4C)	0.5502 (5)	0.3377 (10)	0.0065 (3)
C(5A)	0.1753 (5)	0.3394 (9)	0.0716 (3)
C(5B)	0.5117 (4)	0.5864 (7)	0.1807 (3)
C(5C)	0.5289 (6)	0.2492 (9)	-0.0224 (3)
C(6A)	0.1961 (5)	0.2405 (9)	0.0981 (3)
C(6B)	0.4799 (5)	0.6160 (7)	0.1418 (2)
C(6C)	0.4729 (6)	0.1684 (9)	-0.0149 (3)
C(N1)	0.8098 (4)	0.2307 (8)	0.1965 (2)
C(N2)	0.8326 (4)	0.2399 (8)	0.2429 (2)
C(N3)	0.6778 (4)	0.2288 (7)	0.2075 (2)
C(N4)	0.6681 (5)	0.0873 (7)	0.1997 (3)
C(N5)	0.7288 (4)	0.2779 (8)	0.1380 (2)
C(N6)	0.6586 (5)	0.3327 (8)	0.1190 (2)
C(N7)	0.7363 (4)	0.4323 (7)	0.1982 (2)
<u>C(N8)</u>	0.7959 (5)	0.5156 (8)	0.1806 (3)
Н	0.523 (10)	0.213 (19)	0.213 (6)

^a Atoms are numbered as indicated in Figure 2.

Figure 2. Molecular structure of $(C_2H_5)_4N^+$ -fac-[(CO)₃ReP(C₆H₅)₂-(o-C₆H₄C(H)OC=O)]⁻ (22). The H atom is drawn with an arbitrary isotropic thermal parameter.

Table	V.	Bond	Distances	in	2.24
1 aure	••	Donu	Distances	111	<u> </u>

from	to	distance (Å)
C1	01	1.156 (9)
C1	Re	1.960 (7)
C2	O2	1.151 (9)
C2	Re	1.953 (8)
C3	O3	1.168 (9)
C3	Re	1.935 (7)
C4	Н	1.130
C4	O4	1.506 (8)
C4	Re	2.225 (7)
C5	O5	1.226 (9)
C5	O4	1.382 (8)
C5	Re	2.165 (7)
Р	Re	2.416 (2)
C(1A)	C(3A)	1.397 (12)
C(1A)	C(2A)	1.398 (11)
C(1A)	Р	1.837 (7)
C(1B)	C(2B)	1.406 (10)
C(1B)	C(3B)	1.415 (10)
C(1B)	Р	1.822 (7)
C(1C)	C(2C)	1.358 (11)
C(1C)	C(3C)	1.399 (11)
C(1C)	Р	1.844 (7)
C(2A)	C(4A)	1.392 (12)
C(2B)	C(4B)	1.402 (10)
C(2B)	C4	1.516 (10)
C(2C)	C(4C)	1.397 (11)
C(3A)	C(6A)	1.355 (12)
C(3B)	C(6B)	1.385 (11)
C(3C)	C(6C)	1.393 (12)
C(4A)	C(5A)	1.374 (14)
C(4B)	C(5B)	1.390 (10)
C(4C)	C(5C)	1.364 (13)
C(5A)	C(6A)	1.388 (13)
C(5B)	C(6B)	1.404 (11)
C(5C)	C(6C)	1.367 (14)
C(N1)	N	1.506 (9)
C(N1)	C(N2)	1.547 (10)
C(N3)	C(N4)	1.513 (11)
C(N3)	N	1.518 (9)
C(N5)	N	1.526 (9)
C(N5)	C(N6)	1.533 (11)
C(N7)	N	1.523 (9)
C(N7)	C(N8)	1.530 (10)

^a Atoms are numbered as indicated in Figure 2.

metallacyclic methine hydrogen from an electron difference map. All other hydrogens were geometrically located and assigned C-H bond distances of 1.0 Å.

The molecular structure of **22** is given in Figure 2. Positional parameters are summarized in Table IV. Bond distances and angles are compiled in Tables V and VI.

When CD₃CN solutions of **22** were treated with CF₃CO₂H (1.0 equiv), α -hydroxyalkyl complex **5** formed in 74% spectroscopic yield.

III. Chemistry of and Other Synthetic Approaches to Rhenium α -Hydroxyalkyl Complex 5. Attempts to insert CO into the rhenium-hydroxyalkyl carbon bond of 5 were unsuccessful. For example, no reaction was observed when 5 was treated with 3 equiv of $P(CH_3)_3$ in refluxing acetone (11 h).

Complex 5 underwent facile and highly condition dependent reactions with acids (eq iv). For instance, treatment of 5 with

0.06 equiv of CF_3SO_3H in acetone/ H_2O gave the symmetrical ether $[(CO)_4 \text{ReP}(C_6 H_5)_2(o - C_6 H_4 CH) -]_2O$ (23; 28-36% of theory). The same product was obtained (84% of theory) when (silyloxy)alkyl complex 21 was treated with CF₃SO₃H in acetone/ H_2O . In both cases, NMR data (Table I) indicated 23, which contains two chiral centers, to be comprised of a single diastereomer.

When 5 was treated with CF_3SO_3H (0.21 equiv) in benzene (eq iv), hydride transfer disproportionation occurred to give acyl complex $(CO)_4 ReP(C_6H_5)_2(o-C_6H_4C==O)$ (24, 79% of theory) and alkyl complex (CO)₄ReP(C_6H_5)₂(o- $C_6H_4CH_2$) (25, 75% of theory). Acyl complex 24 had been previously reported,³⁰ and an authentic sample was synthesized by a modified procedure (eq v). However, 25 was a new compound and was independently prepared by the reaction of $(CO)_5ReCH_2C_6H_5$ and $(C_6H_5)_2P$ - $(o-C_6H_4CH_3)$ in refluxing heptane (13 h; 56%).

In the process of characterizing complexes 24 and 25, we reacted 24 and BH_3 THF. On the basis of literature precedent,³¹ the expected product was 25. However, substantial amounts of α hydroxyalkyl complex 5 formed, and by optimization of conditions we were able to isolate 5 in 93% yield (eq v). The sequence of reactions shown in eq v therefore constitutes the most direct route to 5. Acyl complex 24 was inert to 2000 psi of H₂ in acetone (25 °C, 7 days).

Although we were pleased that 5 was an isolable complex, we had not yet demonstrated that the direction of the equilibrium in eq i could be reversed entropically. Hence, we attempted to prepare 5 from (CO)₅ReH via the substitution product cis- $(CO)_4 Re(H)P(C_6H_5)_2(o-C_6H_4CHO)$. Substitution of CO in (CO)₅ReH by phosphines is known to occur at erratic rates by free radical chain mechanisms,³² and we obtained widely diverging

results depending upon the phosphine employed.

First, $(CO)_5ReH$ and $(C_6H_5)_2P(o-C_6H_4CHO)$ (18) did not react at room temperature (C_6D_6 , 7.5 days). A reaction occurred upon reflux, but α -hydroxyalkyl complex 5 was not produced. The aldehyde functionality in 18 was then protected. Silvlated cyanohydrin $(C_6H_5)_2P(o-C_6H_4CH(CN)OSi(CH_3)_3)$ was prepared from 18 and $(CH_3)_3SiCN$,³³ but failed to react with $(CO)_5ReH$ in C₆D₆ at 40 °C (6 h). However, room-temperature reactions of $(CO)_5$ ReH with phosphine acetals $(C_6H_5)_2P(o C_6H_4CHOCH_2CH_2O)^{25}$ and $(C_6H_5)_2P(o-C_6H_4CH(OCH_3)_2)$ readily gave $cis(CO)_4Re(H)P(C_6H_5)_2(o-C_6H_4CHOCH_2CH_2O)$ (26, 92%) and $cis(CO)_4Re(H)P(C_6H_5)_2(o-C_6H_4CH(OCH_3)_2)$ (27, 83%), respectively.

Unfortunately, we were subsequently unable to remove the aldehyde protecting groups in 26 and 27, even under conditions that deblocked the free phosphine acetals.³⁴ In some cases, well-defined alternative reactions were observed. For example, attempted use of (CH₃)₃SiI as a deprotecting agent³⁵ for 27 gave iodide complex cis-(CO)₄Re(I)P(C₆H₅)₂(o-C₆H₄CH₂OCH₃) (28, eq vi) in 98% yield.

IV. Synthesis of Manganese α -Hydroxyalkyl Complex 4 and Related Compounds. In order to circumvent some of the problems encountered with (CO)₅ReH above, we next investigated reactions of a more acidic³⁶ and substitution labile^{32,37} hydride, (CO)₅MnH, with functionalized phosphines.

The first reaction attempted, that of (CO)₅MnH with phosphine aldehyde 18 in benzene (eq vii), gave α -hydroxyalkyl complex 4 in quantitative yield as assayed by ¹H NMR spectroscopy. The

product was isolated as a light yellow oil in 75-84% yields following column chromatography; lemon yellow crystals were obtained from ether/hexanes. Complex 4 exhibited an OH ¹H NMR resonance (CD_3CN) at δ 3.73 (br s) and a weak molecular ion in a 15 eV mass spectrum. Its IR spectrum (Table II) showed v_{O-H} at 3503 cm^{-1} (w, br).

Manganese silane complex (CO)₅MnSi(CH₃)₃ has been shown to undergo facile 1,2-addition to aldehydes.³⁸ Hence, it was treated with phosphine aldehyde 18 (eq viii). Subsequently isolated was (silyloxy)acyl complex (CO)₄MnP(C₆H₅)₂(o-C₆H₄CH- $(OSi(CH_3)_3)$ —C=O) (29, 52%). Reaction of 29 with KF in THF/CH₃OH/H₂O gave hydroxyacyl complex (CO)₄MnP- $(C_{6}H_{3})_{2}(o-C_{6}H_{4}CH(OH)-C=O)$ (30, 93%; eq viii), thus providing an authentic sample of the carbonylation product of 4. Complex 30 showed no tendency to decarbonylate on routine

handling and was stable to the conditions of eq vii.

(37) Byers, B. H.; Brown, T. L. J. Organomet. Chem. 1977, 127, 181.
 (38) (a) Johnson, D. L.; Gladysz, J. A. Inorg. Chem. 1981, 20, 2508. (b) Brinkman, K. C.; Gladysz, J. A. Organometallics 1984, 3, 147.

⁽³⁰⁾ McKinney, R. J.; Kaesz, H. D. J. Am. Chem. Soc. 1975, 97, 3066.
(31) (a) Van Doorn, J. A.; Masters, C.; Volger, H. C. J. Organomet. Chem. 1976, 105, 245. (b) Buhro, W. E.; Wong, A.; Merrifield, J. H.; Lin, G.-Y.; Constable, A. G.; Gladysz, J. A. Organometallics 1983, 2, 1852.

⁽³²⁾ Byers, B. H.; Brown, T. L. J. Am. Chem. Soc. 1977, 99, 2527.

^{(33) (}a) Evans, D. A.; Truesdale, L. K.; Carroll, G. L. J. Chem. Soc., Chem. Commun. 1973, 55. (b) Evans, D. A.; Truesdale, L. K. Tetrahedron Lett. 1973, 4929.

⁽³⁴⁾ This suggests that the phosphorus lone pair assists the hydrolysis of the uncomplexed phosphine acetals. (35) Jung, M. E.; Andrus, W. A.; Ornstein, P. L. Tetrahedron Lett. 1977,

⁴¹⁷⁵

^{(36) (}a) Shriver, D. F. Acc. Chem. Res. 1970, 3, 321. (b) Pearson, R. G. Chem. Rev. 1985, 85, 41.

The carbonylation of 4 was attempted under a variety of conditions. No reaction was observed in benzene under 300 psi of CO. In CD₃CN (310-360 psi of CO) and CH₃NO₂ (350-360 psi of CO) decomposition occurred. In no case was any 30 observed. Complex 30 was independently shown to be stable in CH₃NO₂/THF (1.0:1.3) under 350-360 psi of CO.

Discussion

I. Syntheses and Factors Influencing the Stability of Metal α -Hydroxyalkyl Complexes. Three strategies are utilized above for the synthesis of metallacyclic α -hydroxyalkyl complexes 4 and cyclometalation/deprotection (eq iii), metallacyclic acyl 5: complex reduction (eq v), and aldehyde addition (eq vii). Each employs readily available ortho-functionalized aryl phosphines, some of which have been independently prepared by Rauchfuss. In this section, we analyze selected thermodynamic and mechanistic aspects of these syntheses and related chemistry of other α -hydroxyalkyl complexes.

Consider the generalized equilibrium shown in eq ix for the formation of a metal α -hydroxyalkyl complex from a metal hydride and an aldehyde or ketone. In the previous paper, we found that complexes of the type $(CO)_5MCH(C_6H_5)OH$ (M = Mn, Re) rapidly decomposed to (CO)₅MH and benzaldehyde (eq i). We presume that similar results would be obtained with phosphinesubstituted analgoues $(CO)_4(L)MnCH(C_6H_5)OH$. The successful synthesis of 4 (eq vii) can then be directly attributed to the presence of a chelate ring $-\Delta S$ is no longer favorable (positive) for metal hydride formation. There are abundant examples of carbonyl addition reactions which are entropically driven,²¹ the most familiar of which is the cyclization of glucose to its hemiacetal forms.

$$L_nM-H + \frac{O}{H} \longleftrightarrow_{R'} \longleftrightarrow L_nM-\overset{O}{\leftarrow} R'$$
 (ix)

Contrast the formation of α -hydroxyalkyl complex 4 from (CO)₅MnH and 18 (eq vii) with that of (silyloxy)acyl complex 29 from (CO)₅MnSi(CH₃)₃ and 18 (eq viii). Carbon monoxide is lost in the former but retained (as acyl C=O) in the latter. Accordingly, we propose initial phosphine substitution for CO in eq vii but initial aldehyde addition (by Mn-Si) in eq viii.

Regardless of the exact sequence of steps, there are at least two possible mechanisms for manganese-hydrogen bond addition to the aldehyde moiety in eq vii. First, since (CO)₅MnH is a moderate acid ($pK_a \sim 7$),³⁶ the manganese-hydrogen bond should be capable of uncatalyzed ionic addition. Alternatively, (C-O)₅MnH can also undergo nonchain radical additions to unsaturated organic substrates.39

Metal hydrides that are acidic and/or good H. donors would seem to be kinetically the most suited for reacting as in eq ix, regardless of the position of equilibrium. Accordingly, Orchin has found that (CO)₄CoH, which is both a good acid $(pK_a \sim 1)^{36}$ and H• donor,⁴⁰ and CO convert formaldehyde to glycolaldehyde

(eq x).⁴¹ As shown, the best precendented mechanism would involve initial formation of α -hydroxyalkyl complex (CO)₄CoC-H₂OH. Metal hydrides that are hydridic and reduce aldehydes and ketones to alkoxides⁴² should be considerably poorer prospects for reacting as in eq ix.

Of the other α -hydroxyalkyl species in Figure 1, only Wayland's rhodium octaethylporphyrin complexes 8a-d have been unambiguously prepared from the corresponding metal hydride and aldehydes. Rhodium octaethylporphyrin hydride is of unknown acidity, but it has recently been shown to be a good H. donor.43

Equation ix will also be favored with organic substrates containing weaker C=O bonds. Formaldehyde has a weaker C=O bond than other aldehydes.¹⁹ Hence, it is probably not a coincidence that L_nM-CH_2OH complexes are more common than L_nM-CHROH complexes.

Electron-withdrawing substituents (CCl₃, CF₃, etc.) also weaken C=O bonds.^{19,20} This is likely a major factor in the stability of $C(CF_3)_2OH$ complex 1 (Figure 1). Since 1 was prepared by the addition of acid to a $[(\eta^5 \cdot C_5 H_5) Fe(CO)_2]^{-}/(CF_3)_2 C = O$ reaction mixture, it may have formed via an eq ix type route. Analogous reactions of (CF₃)(CF₂H)C=O and (CF₃)(CF₂Cl)C=O gave only traces of possible α -hydroxyalkyl complexes.⁴

Electron-withdrawing substituents can also provide kinetic stabilization of α -hydroxyalkyl complexes. For example, fluorine substitution increases the homolytic metal-carbon bond dissociation energy in transition-metal alkyls.⁴⁴ Bakač and Espenson have characterized a number of labile α -hydroxyalkyl complexes of formula (H₂O)₅CrCH(R)OH²⁺ in aqueous solution.^{16a,b} These decompose by protonolysis and homolysis, as opposed to an eq ix type reaction. The species with $R = CF_3$ is by far the most stable with respect to both decomposition modes.

Finally, the metal hydride L_nM-H can also influence the equilibrium in eq ix. Metal-hydrogen bonds are 20-30 kcal/mol stronger than corresponding metal-alkyl bonds.44 As has been previously noted by Wayland,¹¹ $L_n M$ systems that minimize this difference (i.e., have a stronger "carbon basicity"¹⁷) will favor formation of the α -hydroxyalkyl complex.

Even when α -hydroxyalkyl complexes are thermodynamically unstable with respect to eq ix, they may possess sufficient kinetic stability to be prepared by other routes. Greater kinetic stability would be realized with $L_n M$ moieties that are poor heterolytic and homolytic leaving groups. Hence, complexes with good donor ligands and/or of third-row metals are optimal. In other cases, eq ix might be thermodynamically favorable, but the metal hydride may undergo other types of reactions with the aldehydic substrate at a lower temperature. Alternatively, high temperatures might be required to establish equilibrium, which could destroy the α -hydroxyalkyl product.

Substrates and conditions for the cyclometalation/deprotection route to rhenium α -hydroxyalkyl complex 5 (eq iii) have been carefully optimized. Reactions of additional ortho-substituted phosphines, (C₆H₅)₂P(o-C₆H₄CH₂OR), with (CO)₅ReCH₂C₆H₅

^{(39) (}a) Sweany, R. L.; Halpern, J. J. Am. Chem. Soc. 1977, 99, 8335. (b) Sweany, R.; Butler, S. C.; Halpern, J. J. Organomet. Chem. 1981, 213, **4**87.

^{(40) (}a) Orchin, M. Acc. Chem. Res. 1981, 14, 259. (b) Nalesnik, T. E.; Orchin, M. Organometallics 1982, 1, 222.

⁽⁴¹⁾ Roth, J. A.; Orchin, M. J. Organomet. Chem. 1979, 172, C27.
(42) (a) Labinger, J. A.; Komadina, K. H. J. Organomet. Chem. 1978, 155, C25.
(b) Gaus, P. L.; Kao, S. C.; Youngdahl, K.; Darensbourg, M. J. Am. Chem. Soc. 1985, 107, 2428.

⁽⁴³⁾ Paonessa, R. S.; Thomas, N. C.; Halpern, J. J. Am. Chem. Soc. 1985, 107, 4333.

 ^{(44) (}a) Halpern, J. Acc. Chem. Res. 1982, 15, 238. (b) Connor, J. A.;
 (44) (a) Halpern, J. Acc. Chem. Res. 1982, 15, 238. (b) Connor, J. A.;
 Cafarani-Moattar, M. T.; Bickerton, J.; El Saied, N. I.; Suradi, S.; Carson,
 R.; Takhin, G. A.; Skinner, H. A. Organometallics 1982, 1, 1166. (c) Bruno,
 J. W.; Marks, T. J.; Morss, L. R. J. Am. Chem. Soc. 1983, 105, 6824. (d) Beauchamp, J. L.; Martinho Simões, J. A. Chem. Rev., in press.

Table	VI.	Bond	Angles	in	224
IADIC		DOILO	Aligica	111	

from	thru	to	angle (deg)	from	thru	to	angle (deg)
01	Cl	Re	176.84 (65)	C(3A)	C(1A)	C(2A)	118.77 (71)
O2	C2	Re	177.20 (63)	C(3A)	C(1A)	PÍ	119.98 (60)
O3	C3	Re	175.54 (64)	C(2A)	C(1A)	Р	121.25 (60)
Н	C4	O4	106.15	C(2B)	C(1B)	C(3B)	119.99 (63)
Н	C4	C(2B)	110.20	C(2B)	C(1B)	Р	114.84 (52)
Н	C4	Re	118.89	C(3B)	C(1B)	Р	125.15 (53)
O4	C4	C(2B)	105.99 (51)	C(2C)	C(1C)	C(3C)	118.83 (72)
O4	C4	Re	94.93 (37)	C(2C)	C(1C)	Р	124.42 (58)
C(2B)	C4	Re	117.85 (44)	C(3C)	C(1C)	Р	116.37 (63)
O5	C5	O4	116.77 (62)	C(4A)	C(2A)	C(1A)	119.41 (81)
O5	C5	Re	141.61 (56)	C(4B)	C(2B)	C(1B)	119.28 (64)
O4	C5	Re	101.55 (41)	C(4B)	C(2B)	C4	120.04 (63)
C5	O4	C4	101.97 (47)	C(1B)	C(2B)	C4	120.61 (61)
C(1B)	Р	C(1A)	106.76 (32)	C(1C)	C(2C)	C(4C)	121.21 (80)
C(1B)	Р	C(1C)	104.87 (34)	C(6A)	C(3A)	C(1A)	120.47 (81)
C(1B)	Р	Re	105.11 (24)	C(6B)	C(3B)	C(1B)	120.02 (66)
C(1A)	Р	C(1C)	102.64 (33)	C(6C)	C(3C)	C(1C)	119.74 (88)
C(1A)	Р	Re	121.02 (26)	C(5A)	C(4A)	C(2A)	121.15 (85)
C(1C)	Р	Re	115.19 (24)	C(5B)	C(4B)	C(2B)	120.26 (68)
C3	Re	C2	97.24 (31)	C(5C)	C(4C)	C(2C)	119.68 (89)
C3	Re	C1	94.85 (30)	C(4A)	C(5A)	C(6A)	118.56 (81)
C3	Re	C5	99.53 (28)	C(4B)	C(5B)	C(6B)	120.64 (69)
C3	Re	C4	159.87 (28)	C(4C)	C(5C)	C(6C)	120.28 (79)
C3	Re	Р	94.79 (22)	C(3A)	C(6A)	C(5A)	121.58 (87)
C2	Re	C1	92.34 (31)	C(3B)	C(6B)	C(5B)	119.77 (69)
C2	Re	C5	85.89 (29)	C(5C)	C(6C)	C(3C)	120.25 (85)
C2	Re	C4	88.52 (28)	N	C(N1)	C(N2)	114.85 (61)
C2	Re	Р	167.78 (21)	C(N4)	C(N3)	Ν	116.01 (64)
C1	Re	C5	165.62 (28)	N	C(N5)	C(N6)	115.56 (61)
C1	Re	C4	104.22 (27)	Ν	C(N7)	C(N8)	114.56 (61)
C1	Re	Р	88.80 (22)	C(N1)	N	C(N3)	110.54 (56)
C5	Re	C4	61.51 (26)	C(N1)	Ν	C(N7)	112.27 (57)
C5	Re	Р	90.00 (20)	C(N1)	Ν	C(N5)	105.95 (54)
C4	Re	Р	79.42 (19)	C(N3)	Ν	C(N7)	105.12 (54)
				C(N3)	N	C(N5)	111.29 (56)
				C(N7)	Ν	C(N5)	111.80 (56)

^a Atoms are numbered as indicated in Figure 2.

were briefly examined, and cyclometalation yields were found to qualitatively correlate with ligand bulk. In all cases, initial phosphine substitution occurred. We note in passing that major mechanistic questions attend the subsequent cyclometalation steps.²³

Since cyclometalation is a very general reaction of transitionmetal complexes,⁴⁵ variations of eq iii might have broad applicability for the synthesis of α -hydroxyalkyl complexes. The final deprotection sequence, the O-desilylation $21 \rightarrow 5$, has some analogy in one synthesis of 2 (O-demethylation)⁵ and 7 (O-desilylation).^{10b}

Most of the remaining α -hydroxyalkyl complexes in Figure 1 were synthesized by the carefully controlled hydride reduction of the corresponding carbonyl or formyl complexes (2, 7, 9, 13–17). The surprisingly successful BH₃·THF acyl reduction route³¹ to rhenium α -hydroxyalkyl complex 5 (eq v) belongs to this category. The scope of this reaction is expanded and discussed in the following paper.^{15b}

II. Properties of α -Hydroxyalkyl Complexes. The conversions of α -hydroxyalkyl complexes to symmetrical ethers (eq iv), and hydride transfer disproportionation products (eq v), are emerging as transformations of considerable generality. For example, Casey has reported that 2 (Figure 1) can, in the presence of acid, undergo dimerization to ether $[(\eta^5-C_5H_5)Re(NO)(CO)CH_2-]_2O$ or disproportionate to a 2:1 mixture of $(\eta^5-C_5H_5)Re(NO)(CO)(CH_3)$ and $[(\eta^5-C_5H_5)Re(NO)(CO)_2]^{+,5b,c}$ Wayland has reported that 8b slowly dimerizes in benzene to an ether, which subsequently disproportionates to rhodium octaethylporphyrin acetyl and ethyl complexes.¹¹ These results suggest that α -hydroxyalkyl complexes are readily ionized to $\neg OH$ and cationic alkylidene complexes. Such α -ionizations are common in organometallic chemistry—e.g.,

with L_nMCOOH and L_nMCH_2Cl complexes.⁴⁶

The reluctance of α -hydroxyalkyl complexes 4 and 5 to carbonylate to six-membered hydroxyacyl complexes (e.g., 30) can be attributed to several factors. First, both α -oxy (OR, OSiR₃, etc.) substituents and α -benzyl substituents commonly retard the rates of alkyl migration to coordinated CO.⁴⁷ Second, Lindner has observed that with metallacycles of formula (CO)₄Mn- $(CH_2)_n P(C_6H_5)_2$, carbonylative ring expansion to acyl complexes (CO)₄MnCO(CH₂)_n P(C_6H_5)_2 is considerably more facile, both kinetically and thermodynamically, for n = 2 (4- \rightarrow 5-membered ring) than for n = 3 (5- \rightarrow 6-membered ring).⁴⁸ Note that the

Fing) than for n = 3 (5- \rightarrow 6-membered ring). Note that the $\nu_{C=0}$ in the IR spectrum of the hydroxyacyl complex 30 (Table II) is somewhat lower than the $\nu_{C=0}$ in silyloxyacyl complex 29. Coupled with the low ν_{O-H} in 30, an intramolecular hydrogen bond, $L_nMC(=O)CH(R)OH$, is suggested. This observation is relevant

to the successful carbonylation of 17 (Figure 1) described in the following paper.

The ν_{O-H} of α -hydroxyalkyl complexes 4 and 5 (Table II) are in a normal range. However, they are weak in intensity compared to $\nu_{C=O}$. The hydroxyl proton in 5 is evidently slow to exchange in CD₃CN, as coupling to the methine proton occurs (Table I). Analogous couplings have been observed with a number of other α -hydroxyalkyl complexes (2 (Me₂SO-d₆),^{6d} 8 (toluene-d₈),¹¹ 9 (Me₂SO-d₆),¹² 13 (acetone-d₆),^{13a} 14 (C₆D₆),^{13b} 15 and 16 (acetone-d₆)^{14a}).

 ^{(45) (}a) Bruce, M. I. Angew. Chem., Int. Ed. Engl. 1977, 16, 73. (b) Dehand, J.; Pfeffer, M. Coord. Chem. Rev. 1976, 18, 327. (c) Omae, I. Chem. Rev. 1979, 79, 287.

^{(46) (}a) Grice, N.; Kao, S. C.; Pettit, R. J. Am. Chem. Soc. 1979, 101, 1627. (b) Pelling, S.; Botha, C.; Moss, J. R. J. Chem. Soc., Dalton Trans. 1983, 1495. (c) Richmond, T. G.; Shriver, D. F. Organometallics 1984, 3, 305.

^{(47) (}a) Cawse, J. N.; Fiato, R. A.; Pruett, R. L. Organomet. Chem. 1979, 172, 405. (b) Brinkman, K. C.; Vaughn, G. D.; Gladysz, J. A. Organometallics 1982, 1, 1056.

⁽⁴⁸⁾ Lindner, E.; Funk, G. J. Organomet. Chem. 1981, 216, 393.

III. The Metallabicycle 22. The mode of formation of 22, and its subsequent protonolysis to 5 (eq iii), suggests that 22 is in equilibrium with the alkoxide 31 (eq xi). A similar equilibrium, $32 \rightarrow 33$ (eq xii), involving an alkoxide on a carbon β to a metal, was described in the preceding paper.³ To our knowledge, α metallated alkoxides have not been isolated, but they have been suggested as reaction intermediates.^{10c,49} Of particular relevance is the finding by Thorn that the labile hydroxymethyl complex 34 undergoes the base-catalyzed cyclization shown in eq xiii.^{10e} This reaction likely proceeds via alkoxide attack upon coordinated CH₃CN.

We are unaware of any close structural relatives of the metallabicycle 22.49b One may view the rhenium as occupying a "bridgehead" position and the four-membered ring as an adduct of CO₂ with an alkylidene complex. In the four-membered ring, the C4-Re-C5 angle (61.5°) is markedly compressed from theory (octahedral, 90°). The O4-C4 bond (1.506 (8) Å) is elongated relative to normal carbon-oxygen single bonds (e.g., 1.437 Å in H₃C-OCH₃)⁵⁰ and the corresponding bond in the related metallacycle 33 (1.418 (7) Å).³ However, such carbon-oxygen bond lengths are not uncommon.⁵¹ The Re-C5 bond length (2.165 (7) Å) in 22 is comparable to the rhenium-acyl bond length in $cis-(CO)_4 Re(H_2NC_6H_5)(COCH_3)$ (2.211 (6) Å),⁵² and the Re-C4 bond length (2.225 (7) Å) shows no lengthening over that of other octahedral rhenium alkyl complexes.5

IV. Summary and Relevance to Catalysis. In the preceding discussion, we have intermingled thermodynamic and kinetic facets of the stability of α -hydroxyalkyl complexes. To summarize, the thermodynamic stability of α -hydroxyalkyl complexes with respect to eq ix will be (1) lowered by α -alkyl substituents and enhanced by electron-withdrawing substituents, (2) enhanced with $L_n M$ systems for which metal-carbon bonds are as close as possible in strength to metal-hydrogen bonds, and (3) enhanced by chelation. Both (1) and (2) are enthalpic, whereas (3) is entropic. Importantly, however, the above points also have kinetic counterparts. For example, α -alkyl substituents lower metal-carbon bond-dissociation energies (and therefore increase homolysis rates), whereas electron-withdrawing substituents generally raise metal-carbon bond-dissociation energies.^{16b,44} Hence, factors affecting thermodynamic and kinetic stability of α -hydroxyalkyl complexes are intertwined. Regardless, a reasonably detailed model is now

available (the "hemiacetal analogy") which accounts for many properties of this catalytically important class of compounds.

In catalysis, α -hydroxyalkyl complex stability is secondary to reactivity. For example, in the catalytic hydroformylation of formaldehyde, eq ix is a necessary step. However, only small equilibrium concentrations of α -hydroxyalkyl intermediates need to be generated for subsequent carbonylation to occur. Nonethe less, in both this process and in the synthesis of $\geq C_2$ oxygenates from CO/H_2 , it would appear optimal to employ a L_nM catalyst whose hydride reacted with carbonyl compounds as in eq ix, as opposed to one whose hydride would give an alkoxide.

In the following paper,15b we continue to examine the effect of chelation upon the stability of metal α -hydroxyalkyl complexes. By this strategy, we are able to synthesize the first isolable α hydroxyalkyl complex that carbonylates to a hydroxyacyl complex. This reactivity is examined in detail.

Experimental Section

General. All reactions and filtrations were carried out under a dry N2 atmosphere unless noted. IR spectra were recorded either on Perkin-Elmer Model 521 or 1500 (FT) spectrometers. All NMR data were acquired either on a Bruker WP 200 or a Varian SC 300 spectrometer. 31 P NMR chemical shifts were referenced to external 85% H₃PO₄; positive values indicate downfield shifts. For other information, see Table I. Mass spectra were obtained on an AEI MS-9 spectrometer. Microanalyses were conducted by Galbraith and Schwarzkopf Laboratories.

Solvents. All solvents were distilled under N2. Benzene, toluene, THF, and dioxane were distilled from Na/benzophenone. Acetonitrile was distilled from CaH₂. Nitromethane, CH₂Cl₂, and CHCl₃ were distilled from P_2O_5 . Acetone was distilled from anhydrous CaSO₄ (Drierite). Hexanes, heptane, and octane were distilled from sodium. Decane was vacuum distilled from sodium. The above solvents were purged with N2 for at least 0.5 h before use. Ether was distilled from Na/benzophenone and freeze-pump-thaw degassed before use. Petroleum ether (bp 37-58 °C) was distilled from $LiAlH_4$ and was also freeze-pump-thaw degassed before use.

Ethyl acetate and methanol were reagent grade and used as received. Pyridine was stored over KOH and used without distillation.

NMR solvents were dried over the following drying agents and then transferred by bulb-to-bulb distillation to a dry container. $C_6 D_6$ and CD₃CN: CaH₂. CDCl₃: P₂O₅. CD₂Cl₂: either P₂O₅ or CaH₂. Acetone- d_6 : 4A molecular sieves. THF- d_8 : LiAlH₄.

Reagents. Silanes (CH₃)₃SiBr, (CH₃)₃SiI, (CH₃)₃SiCN, and (t- C_4H_9)(CH₃)₂SiCl were obtained from Petrarch. The first three were distilled from CaH_2 . With $(CH_3)_3SiCN$, the first fraction was discarded. Technical grade $(C_6H_5)_2PCl$ (Aldrich) was distilled under vacuum; the first fraction was discarded. Phosphines $(C_6H_5)_3P$ and $(C_6H_5)_2P(o-1)_3P$ C₆H₄CH₃) were used as received from Aldrich and Strem, respectively.

Ortho ester HC(OCH₃)₃ (Aldrich) was distilled from CaH₂. Standard $(C_6H_5)_3CH$ (Aldrich) was recrystallized from ethanol. Standard (C_6 -H₅)₃SiCH₃ was prepared from sublimed (C₆H₅)₃SiCl (Petrarch) and CH₃MgBr in THF by a slight modification of the literature procedure⁵⁴ and was subsequently sublimed.

The following were used as received: BH3. THF, 1 M in THF (Aldrich); p-CH₃C₆H₄SO₃H·H₂O (Matheson Coleman and Bell); (n- $C_4H_9)_4N^+F^-(H_2O)_3$ (Fluka); CF_3CO_2H (Fischer); CF_3SO_3H (Aldrich); CO (Matheson)

Hydrides (CO), MnH^{55,56} and (CO), ReH⁵⁷ were prepared from (CO)₅M⁻ by modifications of the literature procedures. Yields improved somewhat when $K^+(CO)_5 M^-$ were used³⁸ instead of Na⁺(CO)₅M⁻. Silane (CO)₅MnSi(CH₃)₃ was prepared as previously described⁵⁹ except that isolated $K^+(CO)_5 Mn^-$ was used.⁵⁸ Carbonyl Mn₂(CO)₁₀ was purchased from Strem and sublimed before use. Complex (CO)₅ReCH₂-

- 1967, 89, 2851.
- (58) Ellis, J. E.; Flom, E. A. J. Organomet. Chem. 1975, 99, 263

(59) Enis, D., Hong, E. A. *organometal circle 1982*, 1, 1467. (b)
 Malisch, W.; Kuhn, M. *Chem. Ber.* 1974, 107, 979. (c) Gladysz, J. A.;
 Williams, G. M.; Tam, W.; Johnson, D. L.; Parker, D. W.; Selover, J. C.
 Inorg. Chem. 1979, 18, 553.

^{(49) (}a) Gell, K. I.; Schwartz, J. J. Organomet. Chem. 1978, 162, C11.

⁽b) A carborane complex with a MO-C-O-C=O linkage (generated by alkoxide cyclization) recently has been called to our attention: Wegner, P. A.; Guggenberger, L. J.; Muetterties, E. L. J. Am. Chem. Soc. 1970, 92, 3473.

 ⁽⁵⁰⁾ Reference 19, p 527.
 (51) For leading references, see: Allen, F. H.; Kirby, A. J. J. Am. Chem.
 Soc. 1984, 106, 6197 and immediately following papers.
 (52) Lukehart, C. M.; Zeile, J. V. J. Organomet. Chem. 1977, 140, 309.

^{(53) (}a) (CO)₅ReCH₃, 2.308 (17) Å: Rankin, D. W. H.; Robertson, A. J. Organomet. Chem. 1976, 105, 331. (b) (-)-(R)-(η⁵-C₅H₅)Re(NO)-(PPh₃)(CH₂C₆H₅), 2.203 (8) Å: Merrifield, J. H.; Strouse, C. E.; Gladysz, J. A. Organometallics 1982, 1, 1204.
(54) Marsden, H.; Kipping, F. S. J. Chem. Soc. 1908, 93, 198.
(55) King, R. B.; Stone, F. G. A. Inorg. Synth. 1963, 7, 196.
(56) Vaughn, G. D. Ph.D. Thesis, UCLA, 1984.
(57) Braterman, P. S.; Harrill, R. W.; Kaesz, H. D. J. Am. Chem. Soc.
1967, 89, 2851.

 C_6H_5 was prepared by a literature procedure.²⁷ Phosphines not given below and $(C_2H_5)_4N^+F^-(H_2O)_{2.6}^{60}$ were prepared as described in the supplementary material.

Synthesis of $(C_6H_5)_2P(o-C_6H_4CH_2OSi(CH_3)_2(t-C_4H_9))$ (20). This preparation was conducted in air. A round-bottomed flask was fitted with a reflux condenser and a drying tube and was charged with $(C_6H_5)_2P(o-C_6H_4CH_2OH)$ (19, 2.81 g, 9.61 mmol), ²⁶ CH₂Cl₂ (50 mL), (t-C₄H₉)(CH₃)₂SiCl (2.05 g, 13.6 mmol), and pyridine (0.9 mL, 11 mmol). The reaction was refluxed for 32 h. Then hexanes (50 mL) were added. The precipitated salts were removed by filtration and rinsed with hexanes. Solvent was removed from the filtrate by rotary evaporation, and the residue was chromatographed on silica gel with 90:10 hexanes/ethyl acetate. Solvent was removed from the product-containing fractions and the residue was dried under vacuum for 3 days to give 3.71 g (9.12 mmol, 95%) of **20** as a white solid, mp 52.5-53.5 °C. This preparation frequently gave **20** as a colorless oil. ¹H NMR (δ , CDCl₃): 7.68-7.59 (m, 1 H), 7.40-7.19 (m, 11 H), 7.18-7.07 (m, 1 H), 6.88-6.79 (m, 1 H), 4.88 (d, $J_{HP} = 1.8$ Hz, 2 H), 0.88 (s, 9 H), -0.01 (s, 6 H). ¹³C[¹H, ³¹P] NMR (ppm, CDCl₃): 145.3, 136.1, 133.9, 133.3, 132.7, 128.8, 128.7, 128.5, 126.8, 125.9, 63.0, 25.9, 18.3, -5.4. ³¹P[¹H] NMR (ppm, CDCl₃): -15.9. Anal. Calcd for C₂₅H₃₁OPSi: C, 73.85; H, 7.68. Found: C, 73.64; H, 8.04.

Synthesis of $(C_6H_3)_2P(o-C_6H_4CH(OCH_3)_2)$. A Schlenk flask was charged with N₂-purged methanol (40 mL), $(C_6H_3)_2P(o-C_6H_4CHO)$ (18, 0.296 g, 1.02 mmol),²⁵ HC(OCH_3)_3 (0.2 mL, 1.8 mmol), and about 10 mg of *p*-CH₃C₆H₄SO₃H·H₂O. The reaction was stirred for 14 h, during which time it decolorized. Then K₂CO₃ was added. The mixture was filtered, and solvent was removed from the filtrate by rotary evaporation. The resulting residue was dissolved in a minimum of CH₂Cl₂ and chromatographed on a silica gel column (2 × 15 cm) with 3:1 hexanes/ethyl acetate. The eluant was collected under a N₂ purge. Subsequent solvent removal gave 0.294 g (0.874 mmol, 86%) of product as a white powder, mp 84.5-86 °C. ¹H NMR (δ , CDCl₃): 7.75-7.62 (m, 1 H), 7.47-7.06 (m, 12 H), 7.04-6.90 (m, 1 H), 6.00 (d, J_{HP} = 5.2 Hz, 1 H), 3.14 (s, 6 H). ¹³C[¹H, ³¹P] NMR (ppm, CDCl₃): 142.8, 136.9, 135.7, 134.1, 133.9, 128.8, 128.4, 126.4, 101.7, 53.4. ³¹P[¹H] NMR (ppm, CDCl₃): -15.9. Anal. Calcd for C₂₁H₂₁O₂P: C, 74.99; H, 6.29; P, 9.21. Found: C, 75.02; H, 6.32; P, 9.32.

Synthesis of $(CO)_4 ReP(C_6H_5)_2(o-C_6H_4CHOSi(CH_3)_2(t-C_4H_9))$ (21). A Schlenk flask was charged with (CO)₅ReCH₂C₆H₅ (1.69 g, 4.05 mmol), 20 (1.48 g, 3.65 mmol), and octane (100 mL) which had been purged with N2. The resulting soltuion was heated on a steam bath for 3 h and then refluxed for 2 h. The solvent was then removed under oil pump vacuum and the residue chromatographed on a 4×50 cm silica gel column with 9:1 hexanes/ethyl acetate. The product-containing fractions were collected under N2. Solvent was removed by rotary evaporation and the residue taken up in toluene and filtered through a Pasteur pipet filled with dry silica gel. The toluene was removed by rotary evaporation, and the residue was recrystallized from CH₃CN to give 1.19 g (1.69 mmol, 46%) of white crystalline 21, decomposition point (unsealed capillary) 130-135 °C. Mass spectrum (m/e, 16 eV, ¹⁸⁷Re): 704 (M⁺, 1%), 620 (M⁺ – 3 CO, 62%), 75 (OSi(CH₃)₂H⁺, 100%). Anal. Calcd for C₂₉H₃₀O₅PReSi: C, 49.49; H, 4.30; P, 4.40; Re, 26.46. Found: C, 49.39; H, 4.41; P, 4.50; Re, 26.32.

Synthesis of $(CO)_4 ReP(C_6H_5)_2(o-C_6H_4CHOH)$ (5) from 21. To a stirred solution of 21 (0.263 g, 0.374 mmol) in acetone (5 mL) was added a solution of $(C_2H_5)_4N^+F^-(H_2O)_{2.6}$ (0.483 g, 2.5 mmol) in CH₃CN (6 mL). After 3 h, 10 mL of 90:10 (v/v) acetone/H₂O was added, followed by 10 mL of acetone. The following manipulations were conducted in air. The reaction mixture was filtered through silica gel, and the silica gel was eluted with additional acetone. Solvent was removed from the filtrate, the resulting residue was taken up in ether, and a second silica gel filtration was performed. Solvent was again removed from the filtrate and the residue was taken up in CH₃CN and filtered through glass fiber filter paper (total filtrate volume: 1.5 mL). The remaining workup was performed under N₂. The filtrate was added in 0.3-mL aliquots to a preparative reverse-phase HPLC system (Altex 10×250 mm Ultrasphere-ODS 5 μ m, 80:20 (v/v) CH₃OH/H₂O, flow rate 5 mL/min, UV detection at 370 nm). Solvent was removed from the combined product-containing fractions to give 0.170 g (0.288 mmol, 77%) of **5** as a fine white powder, mp 64-66 °C (evacuated capillary). ³¹P{¹H} NMR (ppm, CD₃CN): 26.6. Mass spectrum (m/e, 70 eV, ¹⁸⁷Re): 590 (M⁺, 26%), 562 (M⁺ - CO, 4%), 534 (M⁺ - 2CO, 30%), 506 (M⁺ - 3CO, 100%), 478 $(M^+ - 4CO, 35\%)$. Anal. Calcd for $C_{23}H_{16}O_5$ PRe: C, 46.86; H, 2.74; P, 5.25; Re, 31.58. Found: C, 46.99; H, 2.94; P, 5.09; Re, 31.67.

Synthesis of $(C_2H_5)_4N^+$ -fac-[(CO)₃ReP(C₆H₅)₂(o-C₆H₄C(H)OC==

O)] (22). To a stirred solution of 21 (0.222 g 0.315 mmol) in acetone (2 mL) was added a solution of $(C_2H_3)_4N^+F^-(H_2O)_{2.6}$ (0.082 g, ca. 0.4 mmol) in CH₃CN (3.8 mL). After 40 h, the solvents were removed by rotary evaporation. The residue was extracted with CH₃CN. Ether was slowly added to the extract until a persistent cloud point was reached. After 2-3 days, colorless crystals of 22 (0.212 g, 0.295 mmol, 94%) were collected by filtration and dried under oil pump vacuum, decomposition point 144-146 °C (evacuated capillary). Repeated recrystallizations were necessary to achieve analytical purity. Anal. Calcd for C₃₁H₃₅NO₅PRe: C, 51.80; H, 4.91; N, 1.95; P, 4.31; Re, 25.90. Found: C, 52.09; H, 5.09; N, 2.24; P, 3.92; Re, 25.68.

Synthesis of 5 from 22. A 5-mm NMR tube was charged with 22 (0.0892 g, 0.124 mmol), Ph₃CH (0.0294 g, 0.120 mmol) standard, and CD₃CN (0.45 mL) and capped with a septum. To the resulting suspension was added 10 μ L (0.13 mmol, 1.0 equiv) of CF₃CO₂H. The tube was shaken and the reaction immediately became homogeneous. Analysis by ¹H NMR after 15 min showed 22 to be consumed and the presence of 5 in 74% yield, as assayed by the integration of its δ 6.1 resonance vs. the standard. A second experiment with Ph₃SiCH₃ standard also gave a 74% spectroscopic yield of 5.

Synthesis of $[(CO)_4 ReP(C_6H_5)_2(o-C_6H_4CH)-]_2O$ (23) from 21. A 5-mm NMR tube was charged with 21 (0.087 g, 0.124 mmol), acetone (1.1 mL), H₂O (65 μ L), and CF₃SO₃H (ca. 0.5 μ L, 0.006 mmol, 0.05 equiv) and capped with a septum. The tube was vigorously shaken for ca. 1 min and then allowed to stand. After 15 min, the formation of yellow crystals was observed. After 36 h, these were collected by filtration and dried under vacuum. Thus obtained was 0.0604 g (0.052 mmol, 84% of theory) of 23. An analytical sample was recrystallized from THF/CH₃CN, decomposition point 212–216 °C (unsealed capillary). Mass spectrum (m/e, 16 eV, ¹⁸⁷Re¹⁸⁷Re): 1162 (M⁺, 8%), 1106 (M⁺ - 2CO, 100%), 1062 (M⁺ - 3CO - O, 20%), 1034 (M⁺ - 4CO - O, 62%), 1006 (M⁺ - 7CO, 11%), 950 (M⁺ - 7CO - O, 18%), 922 (M⁺ - 8CO - O, 21%). Anal. Calcd for C₄₆H₃₀O₃P₂Re₂: C, 47.59; H, 2.60; P, 5.34; Re, 32.07. Found: C, 47.78; H, 2.70; P, 5.34; Re, 31.59.

Synthesis of 23 from 5. A 5-mm NMR tube was charged with 5 (0.055 g, 0.093 mmol), acetone (0.6 mL), $H_2O(30 \ \mu L)$, and CF_3SO_3H (ca. 0.5 μL , 0.006 mmol, 0.06 equiv) and capped with a septum. The tube was vigorously shaken for ca. 1 min and then kept at room temperature. Yellow crystals of 23 formed and were collected by filtration (0.015 g, 0.013 mmol, 28% of theory). Silica gel TLC analysis of the filtrate showed at least six other products.

Synthesis of $(CO)_4 ReP(C_6H_5)_2(o-C_6H_4\dot{C}==O)$ (24) from $(CO)_5 ReC-H_2C_6H_5$. A Schlenk flask was charged with $(CO)_5 ReCH_2C_6H_5$ (1.752 g, 4.20 mmol), $(C_6H_5)_3P$ (1.087 g, 4.14 mmol), and toluene (175 mL). The reaction was refluxed for 2 h, allowed to cool, and filtered through a plug of silica gel. The silica gel was further eluted with CH_2Cl_2 . Solvents were removed from the filtrate by rotary evaporation. The resulting residue gave white crystals of $cis-(CO)_4Re(CH_2C_6H_5)(P-(C_6H_5)_3)$ (2.363 g, 3.63 mmol, 88%) from THF/hexanes. IR (cm⁻¹, hexanes): 2080 m, 1999 s, 1975 vs, 1942 s.

A Schlenk flask was charged with cis-(CO)₄Re(CH₂C₆H₅)(P(C₆H₅)₃) (0.324 g, 0.497 mmol) and decane (200 mL). The reaction was refluxed for 2 h. The solvent was then removed at 55 °C under oil pump vacuum. The residue was taken up in CH₂Cl₂ and filtered through a plug of silica gel. Solvent was removed from the filtrate by rotary evaporation. The resulting yellow residue was chromatographed on a silica gel column with 95:5 (v/v) hexanes/ethyl acetate. Solvent was removed from the product-containing fractions by rotary evaporation. Subsequent vacuum drying gave 0.162 g (0.290 mmol, 58%) of (CO)₄ReP(C₆H₅)₂(o-

C₄H₄).³⁰

A Fischer-Porter bottle was charged with $(CO)_4 \text{ReP}(C_6H_5)_2(o-C_6H_4)$ (0.447 g, 0.800 mmol) and dioxane (15 mL). The bottle was pressurized with 360 psi of CO and the bottom portion was immersed in a 105 °C bath. Gas was vented to maintain the 360-psi internal pressure. After 44 h, the CO was vented and solvent was removed by rotary evaporation. The residue was chromatographed on a silica gel column. A yellow impurity eluted with 90:10 (v/v) hexanes/ethyl acetate. The yellow product eluted with 75:25 (v/v) hexanes/ethyl acetate. Rotary evaporation and subsequent vacuum drying gave 0.397 g (0.676 mmol, 85%) of 24.³⁰

Synthesis of $(CO)_4 ReP(C_6H_5)_2(o-C_6H_4CH_2)$ (25) from $(CO)_5 ReC$ -

⁽⁶⁰⁾ This synthesis combines aspects of earlier preparations: Clark, J. H.; Miller, J. M. J. Chem. Soc., Perkin Trans 1 1977, 15, 1743. Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.

H₂C₆H₅. A Schlenk flask was charged with (CO)₅ReCH₂C₆H₅ (0.504 g, 1.21 mmol), (C₆H₅)₂P(o-C₆H₄CH₃) (0.313 g, 1.13 mmol), and heptane (25 mL). This mixture was refluxed for 13 h. The following manipulations were performed in air. The reaction mixture was filtered through a plug of silica gel in a 15-mL fritted (M) funnel. The plug was further washed with ca. 250 mL of benzene. Solvents were removed from the filtrate by rotary evaporation at room temperature. A CH₂Cl₂ solution of the residue was adsorbed onto Celite. A 3 × 36 cm silica gel column was packed in hexanes. The Celite was loaded on top of the column and the column was eluted with hexanes. The product-containing fractions were collected under a N2 purge. In a glovebox, solvents were removed by rotary evaporation to give white crystals of 25 which were dried under vacuum (0.364 g, 0.635 mmol, 56%), mp 144-146 °C (capillary sealed under N_2). ³¹P{¹H} NMR (ppm, CDCl₃): 30.7. Anal. Calcd for $C_{23}H_{16}O_4PRe:$ C, 48.16; H, 2.81. Found: C, 47.96; H, 2.76.

Syntheses of 24 and 25 from 5. A 5-mm NMR tube was charged with 5 (0.0578 g, 0.0980 mmol) and C_6D_6 (0.8 mL) and was then capped with a septum. Then CF₃SO₃H (1.8 μ L, 0.020 mmol, 0.2 equiv) was added and the tube was shaken. The reaction immediately turned yellow. The only detectable ReCH 1 H NMR resonance was that of 25. The reaction was applied (in air) to a 10×20 cm preparative TLC plate. Development with 90:10 (v/v) hexanes/ethyl acetate gave two product bands which were extracted to give yellow 24 (0.0228 g, 0.0388 mmol, 79%) and white 25 (higher R_f , 0.0210 g, 0.0366 mmol, 75%).

Synthesis of 5 from 24. A 50-mL Schlenk flask was charged with 24 (0.0756 g, 0.129 mmol), THF (5 mL), and a magnetic stir bar. Then a 1 M THF solution of BH3. THF (260 µL, 0.260 mmol) was added and the reaction was stirred. Over the course of 15 min the yellow reaction decolorized. After an additional 15 min, CH₃OH (2 mL) was added, and stirring was continued (30 min). Solvents were then removed under oil pump vacuum. The residue was taken into a glovebox and extracted with ether. The extract was filtered through a Pasteur pipet containing dry silica gel. Hexanes were added to the filtrate. Subsequent solvent removal by rotary evaporation gave 5 (0.073 g, 0.12 mmol, 93%) as a white bubble-up solid.

Synthesis of cis-(CO)₄Re(H)P(C₆H₅)₂(o-C₆H₄CHOCH₂CH₂O) (26). A 5-mm NMR tube was charged with (CO)₅ReH (0.126 g, 0.385

mmol), (C₆H₅)₂P(o-C₆H₄CHOCH₂CH₂O) (0.116 g, 0.347 mmol), and benzene (0.5 mL) and was capped with a septum. After 19 h (times required for complete reaction, as assayed by ¹H NMR spectra of the Re-H region, varied widely), the reaction was filtered through a Pasteur pipet containing dry silica gel. The silica gel was washed with additional benzene. The filtrate was concentrated by rotary evaporation. Heptane was added, and solvent was removed by rotary evaporation to give offwhite air-stable crystals of 26 which were collected by filtration and vacuum dried (0.202 g, 0.319 mmol, 92%), decomposition point 159-164 °C (capillary sealed under N₂). ³¹P⁽¹H) NMR (ppm, acetone-d₆): 13.3. Anal. Calcd for C25H20O6PRe: C, 47.39; H, 3.18. Found: C, 47.40; H, 3.27.

Synthesis of cis-(CO)₄Re(H)P(C₆H₅)₂(o-C₆H₄CH(OCH₃)₂) (27). This compound was prepared analogously to 26 from (CO)₅ReH (0.070 g, 0.21 mmol) and (C₆H₅)₂P(o-C₆H₄CH(OCH₃)₂) (0.0643 g, 0.191 mmol). After 38 h, workup gave beige, air-stable crystalline 27 (0.101 g, 0.159 mmol, 83%). An analytical sample was prepared by taking 27 up in a minimum of petroleum ether at room temperature; white crystals, mp 143-144.5 °C (capillary sealed under N₂), subsequently formed. ³¹P{¹H} NMR (ppm, acetone- d_6): 13.6. Anal. Calcd for C₂₅H₂₂O₆PRe: C, 47.24; H, 3.49. Found: C, 47.42; H, 3.61.

Synthesis of cis-(CO)₄Re(I)P(C₆H₅)₂(o-C₆H₄CH₂OCH₃) (28). A 5-mm NMR tube was charged with 27 (0.0830 g, 0.131 mmol), C_6D_6 (0.45 mL), and (CH₃)₃SiI (0.028 g, 0.14 mmol). After 20 min, a ¹H NMR spectrum indicated that 27 had been consumed; characteristic resonances of CH3OSi(CH3)3 (& 3.30 and 0.11, referenced to C6D6H) were noted. In a glovebox, the contents of the tube were washed into a flask with toluene and concentrated to an oily residue by rotary evaporation. The residue was taken up in benzene and filtered through a Pasteur pipet containing dry silica gel. Toluene was added to the filtrate, which was subsequently concentrated to ca. 1 mL by rotary evaporation. Then 25 mL of hexanes was added. Solvent was removed by rotary evaporation to give 28 as a bubble-up foam (0.094 g, 0.129 mmol, 98%). ³¹P[¹H] NMR (ppm, CDCl₃): -5.1. Anal. Calcd for $C_{24}H_{19}IO_5PRe$: C, 39.41; H, 2.62. Found: C, 39.62; H, 2.90.

Synthesis of $(CO)_4MnP(C_6H_5)_2(o-C_6H_4CHOH)$ (4).⁶¹ A 5-mm NMR tube was charged with 18 (0.211 g, 0.727 mmol). Then a solution of (CO)₅MnH (0.153 g, 0.781 mmol) in 1.5 mL of benzene was added via syringe. The tube was fitted with a septum and shaken. A small needle connected to a hood-vented oil bubbler was inserted into the septum to vent the CO that vigorously evolved. After the CO evolution subsided, the disappearance of the aldehyde ¹H NMR doublet (J_{HP} = 5 Hz, ca. δ 10.5) was monitored. After 9 h, the aldehyde was consumed. A 3 × 37 cm silica gel column was packed in 85:15 (v/v) hexanes/ethyl acetate. The contents of the tube were directly applied to the top of the column. The tube was rinsed once with acetone. The reaction mixture was then eluted (under N_2) from the column with 85:15 hexanes/ethyl acetate. A yellow $Mn_2(CO)_{10}$ fraction eluted first, followed by a light vellow product fraction. Solvent was removed from the latter under oil pump vacuum to give 4 (0.279 g, 0.609 mmol, 84%) as a light yellow oil. The oil was taken up in a minimum of ether. Hexane was added and the mixture was concentrated under oil pump vacuum until a cloud point was reached. The mixture was allowed to stand for 1 h and was then placed in a -4 °C refrigerator for 12 h. Lemon yellow crystals of 4, mp 121.5-123.5 °C (capillary sealed under N_2), were subsequently collected by filtration. ${}^{31}P_{1}^{1}H_{1}^{1}$ NMR (ppm, CD₃CN): 77.4.⁶² Mass spectrum (*m/e*, 15 eV): 458 (M⁺, 0.4%), 430 (M⁺ - CO, 9.4%), 402 (M⁺ - 2CO, 1.0%), 374 (M⁺ - 3CO, 22.2%), 346 (M⁺ - 4CO, 100%), and 316 (M⁺) 4CO - CH₂O, 52.3%). Anal. Calcd for C₂₃H₁₆MnO₅P: C, 60.28; H, 3.52. Found: C, 60.35; H, 3.70.

Synthesis of $(CO)_4MnP(C_6H_5)_2(o-C_6H_4CH(OSi(CH_3)_3)-C=0)$ (29). A round-bottomed flask was charged with 18 (0.119 g, 0.410 mmol), CH₂Cl₂ (2 mL), and (CO)₅MnSi(CH₃)₃ (0.139 g, 0.518 mmol). The times needed for reaction varied from 5 to 8 h, as judged by monitoring the consumption of 18 by TLC. The reaction was concentrated by rotary evaporation. Hexanes were added and all solvents were then completely removed. The resulting residue was taken up in a small amount of CH_2Cl_2 , added to the top of a 3 \times 39 cm silica gel column, and then eluted with 90:10 (v/v) hexanes/ethyl acetate. The light yellow product band was collected under a N2 purge. Solvent was removed by rotary evaporation to give, after vacuum drying, 0.119 g (0.213 mmol, 52%) of 29. Lemon yellow crystals, decomposition point 156-157.5 °C (capillary sealed under N₂), were obtained from CH₂Cl₂/CH₃CN. ³¹P-[¹H] NMR (ppm, CD₂Cl₂): 50.1.⁶² Mass spectrum (m/e, 20 eV): 502 (M⁺ - 2CO, 5%), 446 (M⁺ - 4CO, 1%), 418 (M⁺ - 5CO, 100%). Anal. Calcd for C₂₇H₂₄MnO₆PSi: C, 58.07; H, 4.33; Mn, 9.84; P, 5.55. Found: C, 58.00; H, 4.55; Mn, 9.90; P, 5.57.

Synthesis of $(CO)_4MnP(C_6H_5)_2(o-C_6H_4CH(OH)-C=0)$ (30). A Schlenk flask was charged with 29 (0.082 g, 0.15 mmol), THF (5 mL), CH₃OH (4 mL), and aqueous KF (5.2 M, 0.150 mL). The reaction was stirred for 45 min and the solvents were removed by oil pump vacuum. The residue was extracted with benzene and then filtered through a Pasteur pipet containing dry silica gel. The silica gel was eluted with ca. 50 additional mL of benzene. Solvent was removed from the filtrate to give, after vacuum drying, 0.067 g (0.14 mmol, 93%) of 30 as a white powder, decomposition point 152–158 °C (capillary sealed under N₂). ³¹P{¹H} NMR (ppm, THF- d_8): 47.0.⁶² Anal. Calcd for C₂₄H₁₆MnO₆P: C, 59.28; H, 3.32. Found C, 59.27; H, 3.15. X-ray Crystal Structure of 22. A suitable single crystal was grown by

layering a CH₃CN solution of 22 with ether. Data were collected on a Syntex PI automatic diffractometer as outlined in Table III. Of 5557 reflections with $2\theta < 50^\circ$ collected, 4724 with $I \ge 3\sigma(I)$ were used in the final refinement.63

The rhenium position was obtained from a three-dimensional Patterson map. Several cycles of Fourier synthesis and least-squares refinement yielded positions of all non-hydrogen atoms. Absorption corrections were then applied. After refinement to convergence at R = 0.042, $R_w = 0.068$,⁶⁴ the position of the metallacyclic hydrogen atom was located from an electron difference map. All the other hydrogens were geometrically located and assigned C-H bond distances of 1.00 Å. All non-hydrogen atoms were refined with anisotropic thermal parameters. The positional parameters for the hydrogen atom H were refined with use of a maximum sin θ/λ cutoff value of 0.35 while the other atomic positions and thermal parameters were kept constant. In the final refinement cycle, only the non-hydrogen atoms were refined. A final R index of 0.035 with

⁽⁶¹⁾ A more detailed preparation is available: Vaughn, G. D.; Gladysz, J. A. Inorg. Synth., in press.

⁽⁶²⁾ The ³¹P NMR chemical shifts of 4, 29, and 30 exhibit ring size effects previously noted by Garrou and Lindner: Garrou, P. E. Chem. Rev. 1981,

<sup>previously noted by Garrou and Lindner: Garrou, P. E. Chem. Rev. 1981, 81, 229. Lindner, E.; Funk, G.; Hoehne, S. Chem. Ber. 1981, 114, 2465.
(63) In-house programs (UCLA) were used for data refinement. One of these incorporated modifications of the programs CARESS by R. W. Broach (University of Wisconsin) and PROFILE by P. Coppens, P. Becker, and R. H. Blessing (SUNY, Buffalo).
(64) All least suprast and fragments computed the suprast for the program of the program of</sup>

⁽⁶⁴⁾ All least-squares refinements computed the agreement factors R and R_w according to $R = \sum ||F_0| - |F_c||/\sum |F_0|$ and $R_w = [\sum w_i||F_0| - |F_c||^2/\sum \omega_i|F_0|^2]^{1/2}$, where F_0 and F_c are the observed and calculated structure factors, respectively, and $\omega_i^{1/2} = 1/\sigma(F_0)$. The function minimized in all least-squares refinements was $\sum \omega_i ||F_0| - |F_c||^2$.

 $R_{\rm w} = 0.058$ was obtained. The esd's for the atomic coordinates of the metallacyclic hydrogen were obtained from the last refinement cycle which used a sin θ/λ cutoff. The other hydrogens were not refined. The temperature factors of the hydrogen atoms were based on the temperature factors of the carbons to which they were bonded.

Acknowledgment. We are grateful to the Department of Energy for support of this project. FT NMR spectrometers utilized were provided by NSF departmental instrumentation grants.

Supplementary Material Available: Additional crystallographic data for 22 and preparations of $(C_2H_5)_4N^+F^-(H_2O)_{2.6}$ and $(C_6H_5)_2P(o-C_6H_4X)$ where X = CHO (18), CH₂OH (19), $CH_2OSi(CH_3)_3$, $CH(CN)OSi(CH_3)_3$, and $CH=N(t-C_4H_9)$ (29) pages). Ordering information is given on any current masthead page.

Synthesis and Reactivity of Metallacyclic Manganese α -Hydroxyalkyl Complexes Containing Aliphatic Bridges and Phosphorus and Nitrogen Donor Atoms; First Carbonylation of an Isolable α -Hydroxyalkyl Complex

George D. Vaughn and J. A. Gladysz*

Contribution from the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112. Received June 18, 1985

Abstract: Reaction of $(CO)_5$ MnH with $(C_6H_5)_2$ PCH₂CH₂CHO (3) gives $cis-(CO)_4$ Mn(H)P $(C_6H_5)_2$ CH₂CH₂CHO (4, 97%), which cannot be induced to cyclize to α -hydroxyalkyl complex (CO)₄MnP(C₆H₅)₂CH₂CH₂CHOH (5). Two other attempted syntheses of 5—the photochemical decarbonylation of hydroxyacyl complex $(CO)_4MnP(C_6H_5)_2CH_2CH_2CH(OH)-C=O$ (7) and the BH₃·THF reduction of acyl complex (CO)₄MnP(C₆H₅)₂CH₂CH₂C=O (8)-also give 4. However, analogues of 5 in which the phosphorus is replaced by nitrogen are stable. Complexes $(CO)_4$ MnNH₂CHRCHR'CHOH (10a, R = R' = H; 10b, R = CH₃, \dot{R}' = H; 10c, R = R' = $-(CH_2)_4$ -) are prepared in $\geq 90\%$ yields via BH₃ reduction of the corresponding acyl complexes (CO)₄MnNH₂CHRCHR'-C=O (9a-c). Treatment of 10c with (CH₃)₃SiCl/[(CH₃)₃Si]₂NH gives α-(silyloxy)alkyl complex (CO)₄ $MnNH_2CHRCHR'CHOSi(CH_3)_3$ (12, R = R' = -(CH₂)₄-, 52%). Under 250-360 psi of CO in CH₃NO₂ at -3 °C, 10c and 12 carbonylate to acyl complexes (CO)₄MnNH₂CHRCHR'CH(OH)-C=O (11) and (CO)₄MnNH₂CHRCHR'CH(OSi(CH₃)₃)—C=O (13), respectively. The former reaction is ca. 16 times faster. IR (ν_{O-H} , $\nu_{C=0}$) and ¹³C NMR spectra show the presence of a hydrogen bond between the hydroxyl and acyl oxygen in 11. This is proposed to account, at least in part, for the faster carbonylation of 10c. The possible relevance of these data to the metal-catalyzed conversion of CO/H_2 to oxygenates is discussed.

In the preceding papers,^{1,2} we established that the stability of α -hydroxyalkyl complexes could be dramatically enhanced by incorporating the α -hydroxyalkyl ligand into a chelate ring. For example, we were able to prepare the metallacyclic manganese α -hydroxyalkyl complex (CO)₄MnP(C₆H₅)₂(o-C₆H₄CHOH) (1, eq i) from aldehyde and (CO)₅MnH precursors.² Complex $(CO)_5MnCH(C_6H_5)OH$, which lacks the chelate ring of 1, was too unstable to detect at -50 °C.¹ Rhenium α -hydroxyalkyl complex $(CO)_4 ReP(C_6H_5)_2(o-C_6H_4CHOH)$ (2) was prepared by two routes, one being the BH₃·THF reduction shown in eq ii. Unfortunately, 1 and 2 proved unreactive toward CO and other reagents, such as $P(CH_3)_3$, that can effect "CO insertion" into metal-alkyl bonds. Carbonylation of an α -hydroxymethyl intermediate is believed to be a key step in the metal-catalyzed conversion of CO/H_2 to dioxygenated C_2 molecules such as ethylene glycol³ and in formaldehyde homologation.⁴ Hence, we

sought α -hydroxyalkyl complexes that could be converted to hydroxyacyl complexes.

In this paper, we explore the scope of $aldehyde/(CO)_5MnH$ (eq i) and BH₃·THF (eq ii) routes to metallacyclic α -hydroxyalkyl complexes. We find significant and surprising differences when the aryl linkage in metallacycle 1 is replaced with an aliphatic linkage and when the phosphorus donor atom is replaced with a nitrogen donor atom. We also report the first, and remarkably

⁽¹⁾ Selover, J. C.; Vaughn, G. D.; Strouse, C. E.; Gladysz, J. A. J. Am. Chem. Soc., paper preceding ref 2 in this issue.
 (2) Vaughn, G. D.; Strouse, C. E.; Gladysz, J. A. J. Am. Chem. Soc.,

⁽²⁾ Valgin, G. D.; Strobe, C. E.; Gladysz, J. A. J. Am. Chem. Soc., preceding paper in this issue.
(3) (a) Dombek, B. D. J. Organomet. Chem. 1983, 250, 467. (b) Fahey, D. R. J. Am. Chem. Soc. 1981, 103, 136. (c) Rathke, J. W.; Feder, H. M. "Catalysis of Organic Reactions"; Moser, W. R., Ed.; Marcel Dekker: New York, 1981; p 209. (d) Keim, W.; Berger, M.; Schlupp, J. J. Catal. 1980, 61, 359. (e) Henrici-Olivě, G.; Olivě, S. J. Mol. Catal. 1984, 24, 7.

^{(4) (}a) Chan, A. S. C.; Carroll, W. E; Willis, D. E. J. Mol. Catal. 1983, 19, 377. (b) Roth, J. A.; Orchin, M. J. Organomet. Chem. 1979, 173, C9.